Skip to main content

Fast and Objective Classification of Tumor Tissue by Optical Vibrational Spectroscopy

  • Conference paper
Advances in Medical Engineering

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 114))

  • 1664 Accesses

Abstract

Since optical vibrational spectroscopy is exquisitely sensitive to the biochemical composition of the sample and variations therein, it is possible to monitor metabolic processes and biochemical states in tissue and cells. The chances of identifying spectral indicators of diseases are much more favourable when spectroscopic imaging methods are used. Such images permit a direct correlation between the spectroscopic information and the sample histopathology. The spectroscopic imaging methods, which are barely ten years old at this point in time, become now a valuable technique for biomedical applications. In this contribution we illustrate the capability and versatility of spectroscopic imaging on the example of identification and visualization of brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Marcott, R.C. Reeder, E.P. Paschhalis, D.N. Tatakis, A.L. Boskey and R. Mendelsohn, in Cell. Mol. Bio., Vol. 44, 109, 1998.

    Google Scholar 

  2. N.P. Camacho, P. West, P.A. Torzilli and R. Mendelsohn, in Biopolymers, Vol. 62, 1, 2001.

    Article  Google Scholar 

  3. H. Ou-Yang, E.P. Paschalis, W.E Mayo, A.L. Boskey, and R. Mendelsohn, in Bone Miner Res., Vol. 16, 893, 2001.

    Article  Google Scholar 

  4. E.P. Paschalis, K. Verdelis, S.B. Doty, A.L. Boskey, R. Mendelsohn and M. Yamauchi, in Bone Min. Res., Vol. 16, 1821, 2001.

    Article  Google Scholar 

  5. L.H. Kidder, V.F. Kalasinsky, J.L. Luke, I.W. Levin and E.N. Lewis, in Nature Med., Vol. 3, 235, 1997.

    Article  Google Scholar 

  6. L. Zhang, G.W. Small, A.S. Haka, L.H. Kidder and E.N. Lewis, in Appl. Spectr., Vol. 57, 14, 2003.

    Article  Google Scholar 

  7. D.C. Fernandez, R. Bhargava, S.M. Hewitt and I.W. Levin, in Nature Biotech., Vol. 23, 469, 2005.

    Article  Google Scholar 

  8. A.S. Haka, L.H. Kidder and E.N. Lewis, in Proc. SPIE Biomarkers and Biological Spectra Imaging, Vol. 4259, 47, 2001.

    Google Scholar 

  9. C. Conti, E. Giorgini, T. Pieramici, C. Rubini and G. Tosi, in Mol. Structure, Vol. 744–747, 187, 2005.

    Article  Google Scholar 

  10. L.M. McIntosh, J.R. Mansfield, A.N. Crowson and H.H. Mantsch, in Biospectr., Vol. 5, 265, 1999.

    Article  Google Scholar 

  11. L.M. McIntosh, J.R. Mansfield, A.N. Crowson, J.W.P. Toole, H.H. Mantsch and M. Jackson, in Therapeutics and Systems, Vol. 3907, 126, 2000.

    Google Scholar 

  12. M.E. Rerek, D.J. Moore, R. Mendelsohn and E.P. Paschalis, in Biophysical J., Vol. 78, 250A, 2000.

    Google Scholar 

  13. R. Mendelson, H.C. Chen, M.E. Rerek and D.J. Moore, in Biomed. Optics, Vol. 8, 185, 2003.

    Article  Google Scholar 

  14. D. Moore and R Mendelsohn, in J. Invest. Derm., Vol. 114, 878, 2000.

    Google Scholar 

  15. R. Mendelsohn, E.P. Pschalis and A.L. Boskey, in Biomed. Optics, Vol. 4, 14, 1999.

    Article  Google Scholar 

  16. G. Steiner, A. Shaw, L.-P. Choo-Smith, M.H. Abuid, G. Schackert, S. Sobottka, W. Steller, R. Salzer and H.H. Mantsch, in Biospectroscopy Biopolymers, Vol. 72, 464, 2003.

    Article  Google Scholar 

  17. C. Beleites, G. Steiner, M. G. Sowa, R. Baumgartner, S. Sobottka, G. Schackert and R. Salzer, in Vibr. Spectr., Vol. 38, 143, 2005.

    Article  Google Scholar 

  18. T. Richter, G. Steiner, M. H. Abu-Id, R. Salzer, R. Bergmann, H. Rodig and B. Johannsen, in Vibr. Spectr., Vol. 28, 103, 2002.

    Article  Google Scholar 

  19. R. Jennemann, H.-D. Mennel, B.L. Bauer and H. Wiegandt, in Acta Neurochir. Vol. 126, 170, 1994.

    Article  Google Scholar 

  20. P. Lasch and D. Naumann, in Cell. Mol. Biol.Vol. 44, 189, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Steiner, G. et al. (2007). Fast and Objective Classification of Tumor Tissue by Optical Vibrational Spectroscopy. In: Buzug, T.M., Holz, D., Bongartz, J., Kohl-Bareis, M., Hartmann, U., Weber, S. (eds) Advances in Medical Engineering. Springer Proceedings in Physics, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68764-1_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68764-1_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68763-4

  • Online ISBN: 978-3-540-68764-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics