Skip to main content

A Basic Toolbox for Constrained Quadratic 0/1 Optimization

  • Conference paper
Experimental Algorithms (WEA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5038))

Included in the following conference series:

Abstract

In many practical applications, the task is to optimize a non-linear function over a well-studied polytope P as, e.g., the matching polytope or the travelling salesman polytope (TSP). In this paper, we focus on quadratic objective functions. Prominent examples are the quadratic assignment and the quadratic knapsack problem; further applications occur in various areas such as production planning or automatic graph drawing. In order to apply branch-and-cut methods for the exact solution of such problems, they have to be linearized. However, the standard linearization usually leads to very weak relaxations. On the other hand, problem-specific polyhedral studies are often time-consuming. Our goal is the design of general separation routines that can replace detailed polyhedral studies of the resulting polytope and that can be used as a black box. As unconstrained binary quadratic optimization is equivalent to the maximum cut problem, knowledge about cut polytopes can be used in our setting. Other separation routines are inspired by the local cuts that have been developed by Applegate, Bixby, Chvátal and Cook for faster solution of large-scale traveling salesman instances. By extensive experiments, we show that both methods can drastically accelerate the solution of constrained quadratic 0/1 problems.

Financial support from the German Science Foundation is acknowledged under contracts Bu 2313/1-1 and Li 1675/1-1. Partially supported by the Marie Curie RTN Adonet 504438 funded by the EU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Applegate, A., Bixby, R., Chvátal, V., Cook, W.: TSP cuts which do not conform to the template paradigm. In: Jünger, M., Naddef, D. (eds.) Computational Combinatorial Optimization. LNCS, vol. 2241, pp. 261–304. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Barahona, F., Mahjoub, A.R.: On the cut polytope. Mathematical Programming 36, 157–173 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Buchheim, C., Liers, F., Oswald, M.: Local cuts revisited. Operations Research Letters (2008), doi:10.1016/j.orl.2008.01.004

    Google Scholar 

  4. De Simone, C.: The cut polytope and the Boolean quadric polytope. Discrete Mathematics 79, 71–75 (1990)

    Article  MATH  Google Scholar 

  5. Deza, M., Laurent, M.: Geometry of Cuts and Metrics. Algorithms and Combinatorics, vol. 15. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  6. Liers, F., Jünger, M., Reinelt, G., Rinaldi, G.: Computing Exact Ground States of Hard Ising Spin Glass Problems by Branch-and-Cut. New Optimization Algorithms in Physics, pp. 47–68. Wiley-VCH, Chichester (2004)

    Google Scholar 

  7. Rendl, F., Rinaldi, G., Wiegele, A.: A branch and bound algorithm for Max-Cut based on combining semidefinite and polyhedral relaxations. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 295–309. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Catherine C. McGeoch

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buchheim, C., Liers, F., Oswald, M. (2008). A Basic Toolbox for Constrained Quadratic 0/1 Optimization. In: McGeoch, C.C. (eds) Experimental Algorithms. WEA 2008. Lecture Notes in Computer Science, vol 5038. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68552-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68552-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68548-7

  • Online ISBN: 978-3-540-68552-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics