Skip to main content

Long-Term Signals in the Present-Day Deformation Field of the Central and Southern Andes and Constraints on the Viscosity of the Earth’s Upper Mantle

  • Chapter
The Andes

Abstract

As part of the South American Geodynamic Activities project we observed the present day deformation field in the territories of Chile and Argentina using the Global Positioning System. The results clearly show that the earthquake cycle dominates the contemporary surface deformation of the central and southern Andes. Compared to geological timescales, the transient elastic deformation related to subduction earthquakes presents a short-term signal which can be explained by interseismic, coseismic, and postseismic phases of interplate thrust earthquakes. We constructed the Andean Elastic Dislocation Model (AEDM) in order to subtract the interseismic loading from the observed velocities. The estimated parameters of the AEDM, and the amount and depth of coupling between the subducting Nazca and overriding South American Plates, represent long-term features and show that the seismogenic interface between both plates is fully locked and that the depth of coupling increases from north to south.

The prominent signals in the residual velocity field (i.e. observed velocities minus AEDM) are obviously due to postseismic relaxation processes; they are visible in the area of the 1995 M w 8.0 Antofagasta earthquake and in the area of the 1960 M w 9.5 Valdivia earthquake. Although postseismic deformations, compared to geologic timescales, are short-term signals, those signals are valuable constraints on important long-term features of Andean evolution, i.e., the viscosity of the upper mantle and lower crust. The observed surface data are best fitted with a three-dimensional finite element model in which we incorporate a mantle viscosity of 4 × 1019 Pa s.

The most obvious long-term deformation signal is manifested in the back-arc of the subduction zone where the Brazilian Shield thrusts beneath the Subandean zone. The style and amount of backarc shortening changes along strike of the orogen, increasing from zero in the south (latitude < −38° S) to values in the order of 10 mm yr−1 close to the Bolivian Orocline. In the fore-arc, whilst we see indications for long-term E-W extension, we did not find any apparent slip partitioning. In addition to this long-term signal, we suggest that the asymmetry of interseismic and coseismic deformation may lead to tectonic structures in the fore-arc. If the coseismic deformation does not release all of the accumulated deformation, then, over many earthquake cycles, part of the interseismic deformation may be transformed into permanent long-term plastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allmendinger RW, Isacks BL, Jordan TE, Kay SM (1997) The evolution of the Altiplano-Puna plateau of the Central Andes. Ann Rev Earth Sci 25:139–174

    Article  Google Scholar 

  • Andersen OB, Knudsen P (1998) Global marine gravity field from the ERS-1 and Geosat geodetic mission altimetry. J Geophys Res 103:8129–8137

    Article  Google Scholar 

  • Angermann D, Baustert G, Galas R, Zhu SY (1997) EPOS.P.V3 (Earth Parameter & Orbit System): software user manual for GPS data processing. In: Scientific Technical Report 97/14. GeoForschungsZentrum, Potsdam, Germany, pp 52

    Google Scholar 

  • Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca-South America Euler vector, Earth Planet Sci Lett 171(3):329–334

    Article  Google Scholar 

  • Bangs NL, Cande SC (1997) Episodic development of a convergent margin inferred from structures and processes along the southern Chile margin. Tectonics 16(3):489–503

    Article  Google Scholar 

  • Barrientos SE, Ward SN (1990) The 1960 Chile earthquake: inversion for slip distribution from surface deformation. Geophys J Int 103:589–598

    Google Scholar 

  • Barrientos SE, Plafker G, Lorca E (1992) Postseismic coastal uplift in southern Chile. Geophys Res Lett 19:701–704

    Google Scholar 

  • Bevis M, Martel S (2001) Oblique plate convergence and interseismic strain accumulation. Geochem Geophys Geosyst 2: doi 2000GC000125

    Google Scholar 

  • Bevis M, Kendrick EC, Smalley R Jr, Herring T, Godoy J, Galban F (1999) Crustal motion north and south of the Arica deflection: comparing recent geodetic results from the Central Andes. Geochem Geophys Geosyst 1:1–12

    Article  Google Scholar 

  • Bevis M, Kendrick E, Smalley R Jr, Brooks BA, Allmendinger RW, Isacks BL (2001) On the strength of interplate coupling and the rate of back arc convergence in the central Andes: an analysis of the interseismic velocity field. Geochem Geophys Geosyst 3:doi 10.129/ 2001GC000198

    Google Scholar 

  • Brooks BA, Bevis M, Smalley R Jr, Kendrick E, Manceda R, Laurý’a E, Maturana R, Araujo M (2003) Crustal motion in the Southern Andes (26°–36°S): do the Andes behave like a microplate? Geochem Geophys Geosyst 4(10): doi 10.1029/2003GC000505

    Google Scholar 

  • Byrne DE, Sykes LR, Davis DM (1988) Estimating seismic potential of subduction zones using the seismic front and forearc morphology. US Geol Surv Open File Rep

    Google Scholar 

  • Cahill T, Isacks BL (1992) Seismicity and shape of the subducted Nazca Plate. J Geophys Res 97(12):17503–17529

    Google Scholar 

  • Chinn DS, Isacks BL (1983) Accurate source depths and focal mechanisms of shallow earthquakes in western South America and in the New Hebrides island arc. Tectonics 2(6):529–563

    Google Scholar 

  • Creager KC, Ling Yun C, Winchester JP, Engdahl ER (1995) Membrane strain rates in the subducting plate beneath South America. Geophys Res Lett 22(16)2321–2324

    Article  Google Scholar 

  • Das S, Scholz CH (1981) Off-fault aftershock clusters caused by shear stress increase? Bull Seismol Soc Am 71(5):1669–1675

    Google Scholar 

  • Deng J, Sykes LR (1997) Stress evolution in Southern California and triggering of moderate-, small-, and micro-size earthquakes. J Geophys Res 102(11):24411–24435

    Article  Google Scholar 

  • Doblas M (1998) Slickenside kinematic indicators. Tectonophysics 295(1–2):187–197

    Article  Google Scholar 

  • Dragert H, Hyndman RD, C. RG, Wang K (1994) Current deformation and the width of the seismogenic zone of the northern Cascadia subduction thrust. J Geophys Res 99(B1):653–668

    Article  Google Scholar 

  • Dragert H, Wang K, James T (2001) A silent slip event on the deeper Cascadia subduction interface. Science 292:1525–1528

    Article  Google Scholar 

  • Engdahl ER, Van der Hilst RD, Berrocal J (1995) Imaging of subducted lithosphere beneath South America. Geophys Res Lett 22(16):2317–2320

    Article  Google Scholar 

  • Engdahl ER, Van der Hilst RD, Buland RP (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull Seismol Soc Am 88: 722–743

    Google Scholar 

  • Flück P (1996) 3-D dislocation model for great earthquakes of the Cascadia subduction zone. Diploma thesis, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland

    Google Scholar 

  • Flück P, Hyndman RD, Wang K (1997) Three-dimensional dislocation model for great earthquakes of the Cascadia subduction zone. J Geophys Res 102(9):20539–20550

    Article  Google Scholar 

  • Flueh ER, Vidal N, Ranero CR, Von Hojka AHR, Bialas J, Hinz K, Cordoba D, Danobeitia JJ, Zelt C (1998) Seismic investigation of the continental margin off-and onshore Valparaiso, Chile. Tectonophysics 288:251–263

    Article  Google Scholar 

  • Götze H-J, Lahmeyer B, Schmidt S, Strunk S, Araneda M (1990) Central Andes Gravity Data Base. EOS 71(16):401, 406–7

    Article  Google Scholar 

  • Götze H-J, Lahmeyer B, Schmidt S, Strunk S (1994) The lithospheric structure of the Central Andes (20°–26°S) as inferred from quantitative interpretation of regional gravity. In: Reutter, Scheuber, Wigger (eds) Tectonics of the Southern Central Andes. Springer, Heidelberg, pp 7–21

    Google Scholar 

  • Graeber F, Asch G (1999) Three dimensional models of P-wave velocity and P-to-S velocity ratio in the southern central Andes by simultaneous inversion of local earthquake data. J Geophys Res 104(9):237–220

    Article  Google Scholar 

  • Hackney RI, Echtler HP, Franz G, Götze H-J, Lucassen F, Marchenko D, Melnick D, Meyer U, Schmidt S, Tašárová S (2006) The segmented overriding plate and coupling at the south-central Chilean margin (36–42° S). In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 355–374, this volume

    Google Scholar 

  • Hearn EH (2003) What can GPS data tell us about the dynamics of post-seismic deformation? Geophys J Int 155:753–777

    Article  Google Scholar 

  • Heinze B (2003) Active intraplate faulting in the forearc of North Central Chile (30°–31° S): implications from neotectonic field studies, GPS data, and elastic dislocation modeling, Scientific Technical Report 03/07. GeoForschungsZentrum, Potsdam, Germany

    Google Scholar 

  • Hoffmann-Rothe A, Kukowski N, Dresen G, Echtler H, Oncken O, Klotz J, Scheuber E, Kellner A (2006) Oblique convergence along the Chilean margin: partitioning, margin-parallel faulting and force interaction at the plate interface. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 125–146, this volume

    Google Scholar 

  • Hu Y, Wang K, He J, Klotz J, Khazaradze G (2004) Three-dimensional viscoelastic finite element model for post-seismic deformation of the great 1960 Chile earthquake. J Geophys Res (in press)

    Google Scholar 

  • Husen S, Kissling E, Flueh E, Asch G (1999) Accurate hypocentre determination in the seismogenic zone of the subducting Nazca Plate in northern Chile using a combined on-/ offshore network. Geophys J Int 138(3):687–701

    Article  Google Scholar 

  • Hyndman RD, Wang K (1993) Thermal constraints on the zone of major thrust earthquake failure: the Cascadia subduction zone. J Geophys Res 98(2):2039–2060

    Google Scholar 

  • Ivins ER, James TS (1999) Simple models for late Holocene and presentday Patagonian glacier fluctuations and predictions of a geodetically detectable isostatic response. Geophys J Int 138: 601–624

    Article  Google Scholar 

  • Jordan TE, Isacks BL, Allmendinger RW, Brewer JA, Ramos VA, Ando CJ (1983) Andean tectonics related to geometry of subducted Nazca Plate. Geol Soc Am Bull 94(3):341–361

    Article  Google Scholar 

  • Jordan TE, Reynolds JH III, and Erikson JP (1997) Variability in age of initial shortening and uplift in the Central Andes. In: Ruddiman WF (ed) Tectonic uplift and climate change. Plenum Press, New York, pp 41–61

    Google Scholar 

  • Khazaradze G (1999) Tectonic deformation in western Washington State from Global Positioning System measurements. PhD thesis, Univ of Washington, Seattle

    Google Scholar 

  • Khazaradze G, Klotz J (2003) Short and long-term effects of GPS measured crustal deformation rates along the South-Central Andes. J Geophys Res 108(B6): doi 10.1029/2002JB001879

    Google Scholar 

  • Khazaradze G, Qamar A, Dragert H (1999) Tectonic deformation in western Washington from continuous GPS measurements. Geophys Res Lett 26:3153–3156

    Article  Google Scholar 

  • Khazaradze G, Wang K, Klotz J, Hu Y, He J (2002) Prolonged postseismic deformation of the 1960 great Chile earthquake and implications for mantle rheology. Geophys Res Lett 29(22):2050

    Article  Google Scholar 

  • King GCP, Stein RS, Rundle J (1988) The growth of geological structures by repeated earthquakes, 2: Field examples of continental dip-slip faults. J Geophys Res 93:13319–13331

    Google Scholar 

  • King GCP, Stein RS, Lin J (1994) Static stress changes and the triggering of earthquakes. Bull Seismol Soc Am 84(3):935–953

    Google Scholar 

  • Kley J, Monaldi CR (1998) Tectonic shortening and crustal thickness in the Central Andes: how good is the correlation? Geology 26(8):723–726

    Article  Google Scholar 

  • Klotz J, Angermann D, Michel GW, Porth R, Reigber C, Reinking J, Viramonte J, Perdomo R, Rios VH, Barrientos S, Barriga R, Cifuentes O (1999) GPS-derived deformation of the Central Andes including the 1995 Antofagasta M (sub w) = 8.0 earthquake. Pure Appl Geophys 154:3709–3730

    Article  Google Scholar 

  • Klotz J, Khazaradze G, Angermann D, Reigber C, Perdomo R, Cifuentes O (2001) Earthquake cycle dominates contemporary crustal deformation in Central and Southern Andes. Earth Planet Sci Lett 193:437–446

    Article  Google Scholar 

  • Krawczyk C, SPOC Team (2003) Amphibious seismic survey images plate interface at 1960 Chile earthquake. EOS 84(32):301–312

    Google Scholar 

  • Lavenu A, Cembrano J (1997) Quaternary state of stress in southern Chilean Andes between 32°–45° South latitude. Abs Prog Geol Soc Am 29(6):443

    Google Scholar 

  • Liu M, Yang Y, Stein S, Zhu Y, Engeln J (2000) Crustal shortening in the Andes: why do GPS rates differ from geological rates? Geophys Res Lett 27:3005–3008

    Article  Google Scholar 

  • Masson F, Delouis B (1997) Local earthquake tomography in northern Chile using finite-difference calculations of P-travel times. Phys Earth Planet Int 104(4):295–305

    Article  Google Scholar 

  • McCaffrey R (1994) Global variability in subduction thrust zone-forearc systems. Pure Appl Geophys 142(1):173–224

    Article  Google Scholar 

  • Meschede M (1994) Methoden der Strukturgeologie. F. Enke, Stuttgart

    Google Scholar 

  • Michel G (1994) Neo-kinematics along the North-Anatolian Fault (Turkey). Universität Tübingen

    Google Scholar 

  • NEIC (2001) http://neic.usgs/gov/neis/bulletin/010213142208.html

    Google Scholar 

  • Nelson AR, Manley WF (eds) (1992) Holocene coseismic and aseismic uplift of Isla Mocha, south-central Chile. Quaternary International 15–16, Pergamon, Oxford UK

    Google Scholar 

  • NOAA (1998) Digital relief of the surface of the Earth. National Geophysical Data Center, Boulder, Colorado

    Google Scholar 

  • Norabuena E, Leffler-Griffin L, Mao A, Dixon T, Stein S, Sacks SI, Ocola L, Ellis M (1998) Space geodetic observations of Nazca-South America convergence across the central Andes. Science 279:358–362

    Article  Google Scholar 

  • Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75:1135–1154

    Google Scholar 

  • Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 82(2):1018–1040

    Google Scholar 

  • Oleskevich DA, Hyndman RD, Wang K (1999) The updip and down-dip limits to great subduction earthquakes: thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile. J Geophys Res 104(B7):14965–14992

    Article  Google Scholar 

  • Pacheco JF, Sykes LR, Scholz CH (1993) Nature of seismic coupling along simple plate boundaries of the subduction type. J Geophys Res 98(8):133–159

    Google Scholar 

  • Paskoff R (1970) Recherches geomorphologiques dans le Chili semiaride. Biscaye Freres

    Google Scholar 

  • Patzwahl RJ, Mechie J, Schulze A, Giese P (1999) Two-dimensional velocity models of the Nazca plate subduction zone between 19.5°S and 25°S from wide-angle seismic measurements during the CINCA95 project. J Geophys Res 104(4): 7293–7317

    Article  Google Scholar 

  • Piersanti A (1999) Postseismic deformation in Chile: constraints on the asthenospheric viscosity. Geophys Res Lett 26: 3157–3160

    Article  Google Scholar 

  • Plafker G (1972) Alaskan Earthquake of 1964 and Chilean Earthquake of 1960: implications for Arc Tectonics. J Geophys Res 77:901–925

    Google Scholar 

  • Plafker G, Savage JC (1970) Mechanism of the Chilean earthquake of May 21 and 22, 1960. Geol Soc Am Bull 81:1001–1030

    Google Scholar 

  • Radtke U (1987) Marine terraces in Chile (22°–32°S): geomorphology, chronostratigraphy and neotectonics: preliminary results II. Quaternary of South America and Antarctic Peninsula 5: 239–256

    Google Scholar 

  • Ruegg JC, Campos J, Madariaga R, Kausel E, De Chabalier JB, Armijo R, Dimitriv D, Georgiev I, Barrientos S (2002) Interseismic strain accumulation in south central Chile from GPS measurements, 1996–1999. Geophys Res Lett 29:1517

    Article  Google Scholar 

  • Savage JC (1983) A dislocation model of strain accumulation and release at a subduction zone. J Geophys Res 88(6):4984–4996

    Google Scholar 

  • Schmitz M (1994) A balanced model of the southern central Andes. Tectonics 13:484–492

    Article  Google Scholar 

  • Schmitz M, Lessel K, Giese P, Wigger P, Araneda M, Bribach J, Graeber F, Grunewald S, Haberland C, Luth S, Rower P, Ryberg T, Schulze A (1999) The crustal structure beneath the Central Andean forearc and magmatic arc as derived from seismic studies — the PISCO 94 experiment in northern Chile (21°–23°S) J S Am Earth Sci 12(3):237–260

    Article  Google Scholar 

  • Scholz CH (1990) The mechanics of earthquakes and faulting. Cambridge Univ Press, Cambridge UK

    Google Scholar 

  • Scholz CH, Aviles, CA, Wesnousky SG (1986) Scaling differences between large interplate and intraplate earthquakes. Bull Seismol Soc Am 76(1):65–70

    Google Scholar 

  • Smith WHF, Sandwell DT (1997) Global sea floor topography from satellite altimetry and ship depth soundings. Science 277(5334): 1956–1962

    Article  Google Scholar 

  • Song TA, Simons M (2003) Large trench-parallel gravity variations predict seismogenic behavior in subduction zones. Science 301:630–633

    Article  Google Scholar 

  • Stein RS, King GCP, Rundle J (1988) The growth of geological structures by repeated earthquakes. 1: Conceptual framework. J Geophys Res 93:13307–13318

    Google Scholar 

  • Suarez G, Molnar, P, Burchfield BC (1983) Seismicity, fault plane solutions, depths of faulting and active tectonics of the Andes of Peru, Ecuador and southern Colombia. J Geophys Res 88: 10403–10428

    Article  Google Scholar 

  • Tassara A, Schmidt S, Götze H-J (in prep) A three-dimensional density model of the Andean margin

    Google Scholar 

  • The ANCORP Working Group (1999) Seismic reflection image revealing offset of Andean subduction-zone earthquake locations into oceanic mantle. Nature 397(6717):341–344

    Article  Google Scholar 

  • Tichelaar BW, Ruff LJ (1991) Seismic coupling along the Chilean subduction zone. J Geophys Res 96(7):11997–12022

    Google Scholar 

  • Tichelaar BW, Ruff LJ (1993) Depth of seismic coupling along subduction zones. J Geophys Res 98(2)2017–2037

    Google Scholar 

  • Veit H (1993) Upper Quaternary landscape and climate evolution in the Norte Chico (northern Chile): an overview. Mountain Res Develop 13(2):139–144

    Google Scholar 

  • Wang K (2004) Elastic and viscoelastic models for subduction earthquake cycles. In: Dixon T (ed) Seismogenic zone of subduction thrusts

    Google Scholar 

  • WWang K, Dixon T (2004) “Coupling” semantics and science in earthquake research. EOS 85(18)

    Google Scholar 

  • ang K, He J, Dragert H, James T (2001) Three-dimensional viscoelastic interseismic deformation model for the Cascadia subduction zone. Earth Planet Space 53:295–306

    Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacements. Bull Seismol Soc Am 84(4):974–1002

    Google Scholar 

  • Wessel P, Smith WHF (1995) New version of the Generic Mapping Tools released. EOS 76(33):329

    Article  Google Scholar 

  • Wigger PJ, Schmitz M, Araneda M, Asch G, Baldzuhn S, Giese P, Heinsohn WD, Martinez E, Ricaldi E, Roewer P, Viramonte J (1994) Variation in the crustal structure of the southern Central Andes deduced from seismic refraction investigations In: Reutter KJ, Wigger PJ (eds) Tectonics of the southern Central Andes: structure and evolution of an active continental margin. Springer, Berlin, pp 23–48

    Google Scholar 

  • Yuan X, Sobolev SV, Kind R, Oncken O, Andes Seismology Group (2000) Subduction and collision processes in the Central Andes constrained by converted seismic phases. Nature 408(6815): 958–961

    Article  Google Scholar 

  • Zapata TR, Allmendinger RW (1996) Growth stratal records of instantaneous and progressive limb rotation in the Precordillera thrust belt and Bermejo basin, Argentina. Tectonics 15: 1065–1083

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klotz, J. et al. (2006). Long-Term Signals in the Present-Day Deformation Field of the Central and Southern Andes and Constraints on the Viscosity of the Earth’s Upper Mantle. In: Oncken, O., et al. The Andes. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-48684-8_4

Download citation

Publish with us

Policies and ethics