Skip to main content

Long-Term Geological Evolution and Mass-Flow Balance of the South-Central Andes

  • Chapter
The Andes

Abstract

In south-central Chile (36–42° S), the western edge of South America has evolved as an active margin since the Pennsylvanian (∼305 Ma). Active margins are considered as sites of both potential continental growth and continental destruction. Continental growth in a margin setting can proceed by accretionary offscraping of juvenile material from the oceanic plate and by magmatic additions, whereas net mass loss can be achieved by subducting continental material, delamination, and chemical weathering. In southcentral Chile, margin evolution was never interrupted by island-arc accretion or continental collision. Thus, the area provides an excellent field laboratory for studying mass flux through a long-term, persistent, convergent-margin system.

Using new isotopic age data, we summarize the current knowledge of the geological evolution of the south-central Chilean margin, from subduction initiation to the ongoing Andean morphotectonic processes, with emphasis on mechanisms of mass transfer. It is inferred that net crustal growth and mass losses alternated in time and space, and that dominance of one of the other process might have even occurred contemporaneously within a short distance along the same margin, controlled by factors such as sediment availability in the trench, lower-plate morphology, upper-plate tectonics, and climate.

In south-central Chile, the margin north of 38° S is characterized by a landward trench migration of ∼100 km that occured mainly in the early Permian, whereas farther south, the modern and the late Paleozoic magmatic arcs are superimposed. For most of its lifetime, the margin evolved in a delicate balance between constructive and destructive processes. Over the long term, the south-central Chilean continental margin has not been a site of net growth, but, rather, a site of continental mass wasting, crustal recycling and crustal rejuvenation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adriasola A (2003) Low temperature thermal history and denudation along the Liquiñe-Ofqui Fault Zone in the Southern Chilean Andes (41–42°S). PhD thesis, Ruhr-Universität Bochum, pp 1–119

    Google Scholar 

  • Adriasola A, Stöckhert B, Hervé F (2002) Low temperature thermo-chronology and tectonics in the Chiloé region, Southern Chilean Andes (41°–43°S: 72°–74°W). In: 5th International Symposium on Andean Geodynamics, Toulouse, Abstract volume, pp 15–18

    Google Scholar 

  • Aguirre L, Hervé F, Godoy E (1972) Distribution of metamorphic facies in Chile — an outline. Krystalinikum 9:7–19

    Google Scholar 

  • Albarède F (1998) The growth of continental crust. Tectonophysics 296:1–14

    Google Scholar 

  • Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca-South America Euler vector. Earth Planet Sci Lett 171:329–334

    Google Scholar 

  • Arancibia G (2004) Mid-cretaceous crustal shortening: evidence from a regional-scale ductile shear zone in the Coastal Range of central Chile (32′S). J S Am Earth Sci 17:209–226

    Google Scholar 

  • Ardiles M (2003) La Serie Occidental del basamento metamórfico, centro sur de la Cordillera de Nahuelbuta, Chile, área Quidico-Capitán Pastene. Petrografía, mesoestructura y análisis microtectónico. Memoria de titulo, Dept. de Ciencias de la Tierra, Universidad de Concepción, Chile, pp 1–132

    Google Scholar 

  • Augustsson C, Bahlburg H (2003) Active or passive continental margin? Geochemical and Nd isotope constraints of metasediments in the backstop of a pre-Andean accretionary wedge in southernmost Chile (46°30′–48°30′S). In: McCann T, Saintot A (eds) Tracing tectonic deformation using the sedimentary record. Geol Soc London Spec Pub 208, pp 253–268

    Google Scholar 

  • Bahlburg H, Hervé F (1997) Geodynamic evolution and tectonostratigraphic terranes of northwestern Argentina and northern Chile. Geol Soc Am Bull 109:869–884

    Google Scholar 

  • Bangs NL, Cande SC (1997) Episodic development of a convergent margin inferred from structures and processes along the southern Chile margin. Tectonics 16:489–503

    Google Scholar 

  • Beck ME Jr (1998) On the mechanism of crustal block rotations in the central Andes. Tectonophysics 299:75–92

    Google Scholar 

  • Beck ME Jr, Garcia RA, Burmester RF, Munizaga F, Hervé F, Drake RE (1991) Paleomagnetism and geochronology of late Paleozoic grantitic rocks from the Lake District of southern Chile: implications for accretionary tectonics. Geology 19:332–335

    Google Scholar 

  • Beck ME Jr, Burmester RF, Cembrano J, Drake R, Garcia A, Hervé F, Munizaga F (2000) Paleomagnetism of the North Patagonian batholith, southern Chile. An exercise in shape analysis. Tectonophysics 326:185–202

    Google Scholar 

  • Behrmann JH, Kopf A (2001) Balance of tectonically accreted and subducted sediment at the Chile Triple Junction. Int J Earth Sci 90(4):753–768

    Google Scholar 

  • Bohm M, Lüth S, Echtler H, Asch G, Bataille K, Bruhn C, Rietbrock A, Wigger P (2002) The Southern Andes between 36° and 40°S latitude: seismicity and average seismic velocities. Tectonophysics 356:275–289

    Google Scholar 

  • Bourgois J, Martin H, Lagabrielle Y, Le Moigne J, Frutos Jara J (1996) Subduction erosion related to spreading-ridge subduction: Taitao Peninsula (Chile margin triple junction area). Geology 24(8): 723–726

    Google Scholar 

  • Branlund J, Regenauer-Lieb K, Yuen DA (2000) Fast ductile failure of passive margins from sediment loading. Geophys Res Lett 25(13): 1989–1992

    Google Scholar 

  • Burgess PM, Flint S, Johnson S (2000) Sequence stratigraphic interpretation of turbiditic strata: an example from Jurassic strata of the Neuquén Basin, Argentina. Geol Soc Am Bull 112:1650–1666

    Google Scholar 

  • Burón P (2003) Petrografía, estructuras y microtectónica del área de contacto entre las series metamórficas del basamento Paleozoico entre los 38°08′ y 38°21′S, Cordillera de Nahuelbuta, Chile. Memoria de titulo, Dept. de Ciencias de la Tierra, Universidad de Concepción, Chile, pp 1–144

    Google Scholar 

  • Caminos R, Llambias EJ, Rapela CW, Parica CA (1988) Late Paleozoic-Early Triassic magmatic activity of Argentina and the significance of new Rb-Sr ages from northern Patagonia. J S Am Earth Sci 1:137–145

    Google Scholar 

  • Cazau L, Uliana M (1973) El Cretácico superior continental de la cuenca Neuquina. V Congreso Geológico Argentino, Buenos Aires, Actas 3, pp 131–164.

    Google Scholar 

  • Cembrano J, Hervé F, Lavenu A (1996) The Liquiñe-Ofqui fault zone: a long-lived intra-arc fault system in southern Chile. Tectonophysics 259:55–66

    Google Scholar 

  • Cembrano J, Schermer E, Lavenu A, Sanhueza A (2000) Contrasting nature of deformation along an intra-arc shear zone, the Liquiñe-Ofqui fault zone, southern Chilean Andes. Tectonophysics 319: 129–149

    Google Scholar 

  • Charrier R (1979) El Triásico en Chile y regiones adyacentes de Argentina: una reconstrucción paleogeografica y paleoclimatica. Comunicaciones N°26, Departamento de Geología, Universidad de Chile, Santiago de Chile, pp 1–37

    Google Scholar 

  • Charrier R, Muñoz N (1994) Jurassic-Cretaceous paleogeographic evolution of the Chilean Andes at 23–24° and 34–35°S latitude: a comparative analysis. In: Reutter K-J, Scheuber E, Wigger P (eds) Tectonics of the Southern Central Andes. Springer-Verlag, Berlin Heidelberg New York, pp 233–242

    Google Scholar 

  • Charrier R, Baeza O, Elgueta S, Flynn JJ, Gans P, Kay SM, Muñoz N, Wyss AR, Zurita E (2002) Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, southern Central Andes, Chile (33°–36° S.L.). J S Am Earth Sci 15:117–139

    Google Scholar 

  • Cingolani C, Dalla Salda L, Hervé F, Munizaga F, Pankhurst RJ, Parada MA, Rapela CW (1991) The magmatic evolution of northern Patagonia: new impressions of pre-Andean and Andean tectonics. Geol Soc Am Spec P 265:29–44

    Google Scholar 

  • Cisternas ME, Frutos J (1984) Evolución tectónica paleogeográfica de la cuenca Terciaria de los Andes del sur de Chile. VII Congreso Geológico Chileno, Concepción, Actas 1, pp 6–12

    Google Scholar 

  • Clift P, Vannucchi P (2004) Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev Geophys 42: doi 10.1029/2003RG000127

    Google Scholar 

  • Cobbold PR, Diraison M, Rossello EA (1999) Bitumen veins and Eocene transpression, Neuquén Basin, Argentina. Tectonophysics 314:423–442

    Google Scholar 

  • Collao S, Glodny J, Bascuñán S, Esparza E, Pérez S, Aguilar G (2003) Microtermometría y Cronología en cuarzo de estructuras post-Carbonífero en el basamento metamórfico de Chile Centro-Sur. X Congreso Geologico Chileno, Concepción, Abstract Vol. 11

    Google Scholar 

  • Collot J-Y, Delteil J, Lewis KB, Davy B, Lamarche G, Audru J-C, Barnes P, Chanier F, Chaumillon E, Lallemand S, De Lepinay BM, Orpin A, Pelletier B, Sosson M, Toussaint B, Uruski C (1996) From oblique subduction to intra-continental transpression: structures of the southern Kermadec-Hikurangi margin from multibeam bathymetry, side-scan sonar and seismic reflection. Marine Geophys Res 18:357–381

    Google Scholar 

  • Dalla Salda L, Franzese J (1987) Las megaestructuras del Macizo y la Cordillera Norpatagónica argentina y la génesis de las cuencas volcano-sedimentarias terciarias. Rev Geol Chile 13:3–14

    Google Scholar 

  • Dalla Salda LH, Varela R, Cingolani C, Aragón E (1994) The Rio Chico Paleozoic crystalline complex and the evolution of Northern Patagonia. J S Am Earth Sci 7(3–4):377–386

    Google Scholar 

  • Dalziel IWD, Storey BC, Garrett SW, Grunow AM, Herrod LDB, Pankhurst RJ (1987) Extensional tectonics and the fragmentation of Gondwanaland. In: Dewey JF, Coward MP, Hancock P (eds) Continental Extensional Tectonics. Geol Soc London Spec Pub 28, pp 433–441

    Google Scholar 

  • Defant MJ, Drummond M (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347: 662–665

    Google Scholar 

  • De Ignacio C, López I, Oyarzun R, Márquez A (2001) The northern Patagonia Somuncura plateau basalts: a product of slab-induced, shallow asthenospheric upwelling? Terra Nova 13:117–121

    Google Scholar 

  • De Paolo DJ, Wasserburg GJ (1979) Petrogenetic mixing models and Nd-Sr isotopic patterns. Geochim Cosmochim Acta 43(4):615–627

    Google Scholar 

  • Diraison M, Cobbold PR, Rossello EA, Amos AJ (1998) Neogene dextral transpression due to oblique convergence across the Andes of northwestern Patagonia, Argentina. J S Am Earth Sci 11(6): 519–532

    Google Scholar 

  • Drummond MS, Defant MJ (1990) A model for trondhjemite-tonalitedacite genesis and crustal growth via slab melting: Archean to modern comparisons. J Geophys Res 95:21503–21521

    Google Scholar 

  • Ducea MN, Saaleby JB (1998) The age and origin of a thick maficultramafic keel from beneath the Sierra Nevada batholith. Contributions to Mineralogy and Petrology 133:169–185

    Google Scholar 

  • Duhart P, McDonough M, Muñoz J, Martin M, Villeneuve M (2001) El Complejo Metamórfico Bahía Mansa en la cordillera de la Costa del centro-sur de Chile (39°30′–42°00’S): geocronología K-Ar, 40Ar/39Ar y U-Pb e implicancias en la evolución del margen suroccidental de Gondwana. Rev Geol Chile 28(2):179–208

    Google Scholar 

  • Emparán C, Suárez M, Muñoz J (1992) Hoja Curacautín, Regiones de la Araucania y del Biobio. Mapa, escala 1:250.000. Carta Geológica de Chile, No. 71, Sernageomin, Santiago de Chile

    Google Scholar 

  • Eppinger KJ, Rosenfeld U (1996) Western margin and provenance of sediments of the Neuquén Basin (Argentina) in the Late Jurassic and Early Cretaceous. Tectonophysics 259:229–244

    Google Scholar 

  • Ernst WG (1975) Systematics of large-scale tectonics and age progressions in Alpine Circum-Pacific blueschist belts. Tectonophysics 26:229–246

    Google Scholar 

  • Féraud G, Alric V, Fornari M, Bertrand H, Haller M (1999) 40Ar/39Ar dating of the Jurassic volcanic province of Patagonia: migrating magmatism related to Gondwana break-up and subduction. EPSL 172(1–2):83–96

    Google Scholar 

  • Folguera A, Ramos VA, Melnick D (2002) Partición de la deformación en la zona del arco volcánico de los Andes neuquinos (36–39°S) en los últimos 30 millones de años. Rev Geol Chile 29(2):151–165

    Google Scholar 

  • Forsythe R, Nelson E (1985) Geological manifestations of ridge collision: evidence from the Golfo de Peñas-Taitao basin, southern Chile. Tectonics 4:477–495

    Google Scholar 

  • Franz G, Lucassen F, Kramer W, Trumbull RB, Romer RL, Wilke H-G, Viramonte JG, Becchio R, Siebel W (2006) Crustal evolution at the central Andean continental margin: a geochemical record of crustal growth, recycling and destruction. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes-active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 45–64, this volume

    Google Scholar 

  • Franzese JR, Spalletti LA, (2001) Late Triassic-early Jurassic continental extension in southwestern Gondwana: tectonic segmentation and pre-break-up rifting. J S Am Earth Sci 14:257–270

    Google Scholar 

  • Franzese J, Spalletti L, Gomez Perez I, Macdonald D (2003) Tectonic and paleoenvironmental evolution of Mesozoic sedimentary basins along the Andean foothills of Argentina (32°S–54°S). J S Am Earth Sci 16:81–90

    Google Scholar 

  • Giacosa RE, Heredia N (2004) Structure of the North Patagonian thick-skinned fold-and-thrust belt, southern central Andes, Argentina (41–42°S). J S Am Earth Sci 18:61–72

    Google Scholar 

  • Glodny J, Bingen B, Austrheim H, Molina JF, Rusin A (2002) Precise eclogitization ages deduced from Rb/Sr mineral systematics: The Maksyutov complex, Southern Urals, Russia. Geochim Cosmochim Acta 66:1221–1235

    Google Scholar 

  • Glodny J, Lohrmann J, Echtler H, Gräfe K, Seifert W, Collao S, Figueroa O (2005) Internal dynamics of a paleoaccretionary wedge: insights from combined isotope tectonochronology and sandbox modeling of the South-Central Chilean forearc. Earth Planet Sci Lett 231:23–39

    Google Scholar 

  • Glodny J, Gräfe K, Echtler H (in press) Mesozoic to Quaternary continental margin dynamics in South Central Chile (36°–42°S): the apatite and zircon fission track perspective. Int J Earth Sci

    Google Scholar 

  • Glodny J, Echtler H, Collao S, Ardiles M, Burón P, Figueroa O (submitted) Differential Late Paleozoic active margin evolution in South-Central Chile (37°S–40°S) — the Lanalhue Fault Zone. J S Am Earth Sci

    Google Scholar 

  • Godoy E, Kato T (1990) Late Paleozoic serpentinites and mafic schists from the Coast Range accretionary complex, central Chile: their relation to aeromagnetic anomalies. Geol Rundsch 79:121–130

    Google Scholar 

  • González E (1989) Hydrocarbon resources in the Coastal Zone of Chile. In: Ericksen GE, Cañas Pinochet MT, Reinemund JA (eds) Geology of the Andes and its relation to hydrocarbon and mineral resources. Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series Vol. 11, Houston TX, pp 383–404

    Google Scholar 

  • González Bonorino F, Aguirre L (1970) Metamorphic facies series of the crystalline basement of Chile. Geol Rundsch 59:979–994

    Google Scholar 

  • Gordon A, Ort MH (1993) Edad y correlación del plutonismo subcordillerano en las provincias de Rio Negro y Chubut (41°–42°30′ L.S). XII Congreso Geológico Argentino y II Congreso de Exploración de Hidrocarburos, Mendoza, Actas 4:120–127

    Google Scholar 

  • Grocott J, Brown M, Dallmeyer RD, Taylor GK, Treloar PJ (1994) Mechanisms of continental growth in extensional arcs: An example from the Andean plate-boundary zone. Geology 22:391–394

    Google Scholar 

  • Grove M, Jacobson CE, Barth AP, Vucic A (2003) Temporal and spatial trends of Late Cretaceous-early Tertiary underplating of Pelona and related schist beneath southern California and southwestern Arizona. In: Johnson SE, Paterson SR, Fletcher JM, Girty G, Kimbrough DL (eds) Tectonic evolution of northwestern Mexico and the southwestern USA. Geol Soc Am Spec P 374:381–406

    Google Scholar 

  • Guivel C, Lagabrielle Y, Bourgois J, Maury RC, Fourcade S, Martin H, Arnaud N (1999) New geochemical constraints for the origin of ridge-subduction-related plutonic and volcanic suites from the Chile Triple Junction (Taitao Peninsula and Site 862, LEG ODP141 on the Taitao Ridge). Tectonophysics 311:83–111

    Google Scholar 

  • Haller MJ, Linares E, Ostera HA (1999) Petrology and geochronology of the subcordilleran plutonic belt of Patagonia. In: South American Symposium on Isotope Geology, No. 2, Actas, Servicio Geológico Minero Argentino, Buenos Aires, Anales 34, pp 210–214

    Google Scholar 

  • Hartley AJ, Chong G, Turner P, May G, Kape SJ, Jolley EJ (2000) Development of a continental forearc: a Neogene example from the Central Andes, northern Chile. Geology 28:331–334

    Google Scholar 

  • Hervé M (1976) Estudio geológico de la falla Liquiñe-Reloncaví en la área de Liquiñe: antecendentes de un movimento transcurrente (Provincia de Valdivia). I Congreso Geológico Chileno, Actas 1(B):39–56

    Google Scholar 

  • Hervé F (1977) Petrology of the crystalline basement of the Nahuelbuta mountains, southcentral Chile. In: Ishikawa T, Aguirre L (eds) Comparative studies on the geology of the Circum-Pacific Orogenic Belt in Japan and Chile. Japan Soc Prom Sci Tokyo, pp 1–51

    Google Scholar 

  • Hervé F (1988) Late Paleozoic subduction and accretion in Southern Chile. Episodes 11(3):183–188

    Google Scholar 

  • Hervé F, Munizaga F (1978) Evidencias de un magmatismo intrusivo Triásico Superior-Jurásico Inferior en la Cordillera de la Costra entre los 35°30′ y 36°30′S. Congreso Geológico Argentino, Actas 2:43–52

    Google Scholar 

  • Hervé F, Thiele R, Parada MA (1976) Observaciones geológicas en el Triásico de Chile central entre las latitudes 35°30′ y 40°00′ sur. I Congreso Geologico Chileno Santiago, Actas 1A:297–313

    Google Scholar 

  • Hervé F, Godoy E, Parada MA, Ramos V, Rapela C, Mpodozis C, Davidson J (1987) A general view of the Chilean-Argentinian Andes, with emphasis on their early history. In: Monger JWH, Francheteau J (eds) Circum-Pacific orogenic belts and evolution of the Pacific Ocean basin. AGU, Geodyn Ser 18, pp 97–114

    Google Scholar 

  • Hervé F, Munizaga F, Parada MA, Brook M, Pankhurst RJ, Snelling NJ, Drake R (1988) Granitoids of the Coast Range of central Chile: Geochronology and geologic setting. J S Am Earth Sci 1:185–194

    Google Scholar 

  • Hervé F, Pankhurst RJ, Brook M, Alfaro G, Frutos J, Miller H, Schira W, Amstutz GC (1990) Rb-Sr and Sm-Nd data from some massive sulfide occurrences in the metamorphic basement of South-Central Chile. In: Fontboté L, Amstutz GC, Cardozo M, Cedillo E, Frutos J (eds) Stratabound ore deposits in the Andes. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Hervé F, Pankhurst RJ, Drake R, Beck ME Jr, Mpodozis C (1993) Granite generation and rapid unroofing related to strike-slip faulting, Aysén, Chile. Earth Planet Sci Lett 120:375–386

    Google Scholar 

  • Hervé F, Fanning CM, Pankhurst RJ (2003) Detrital zircon age patterns and provenance of the metamorphic complexes of southern Chile. J S Am Earth Sci 16:107–123

    Google Scholar 

  • Hickey Vargas R, Moreno H, López-Escobar L, Frey F (1989) Geochemical variations in Andean basaltic and silicic lavas from the Villarrica-Lanín volcanic chain (39.5°S): an evaluation of source heterogeneity, fractional crystallization and crustal assimilation. Contrib Min Petrol 103:361–386

    Google Scholar 

  • Hickey Vargas R, Sun M, López-Escobar L, Moreno H, Reagan MK, Morris JD, Ryan JG (2002) Multiple subduction components in the mantle wedge: evidence from eruptive centers in the Central Southern volcanic zone, Chile. Geology 30:199–202

    Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Min Petrol 98:455–489

    Google Scholar 

  • Hofmann AW, White WM (1980) The role of subducted oceanic crust in mantle evolution. Carnegie Institution, Washington, Yearbook 79:477–483

    Google Scholar 

  • Holbrook WS, Lizarralde D, McGeary S, Bangs N, Diebold J (1999) Structure and composition of the Aleutian island arc and implications for continental crustal growth. Geology 27:31–34

    Google Scholar 

  • Hu M, Stallard RF, Edmond JM (1982) Major ion chemistry of some large Chinese rivers. Nature 298:550–553

    Google Scholar 

  • Hurley PM, Rand JR (1969) Pre-drift continental nuclei. Science 164: 1229–1242

    Google Scholar 

  • Hutton DWH, Dempster TJ, Brown PE, Becker SM (1990) A new mechanism of granite emplacement: intrusion in active extensional shear zones. Nature 343:452–455

    Google Scholar 

  • Introcaso A, Pacino MC, Fraga H (1992) Gravity, isostasy, and Andean crustal shortening between 30 and 35°S. Tectonophysics 205:31–48

    Google Scholar 

  • Jacobson CE, Oyarzabal FR, Haxel GB (1996) Subduction and exhumation of the Pelona-Orocopia-Rand schists, southern California. Geology 24:547–550

    Google Scholar 

  • Jicha BR, Scholl DW, Singer BS, Yogodzinski GM, Kay SM (in press) Revised age of Aleutian Island Arc formation implies high rate of magma production. Geology

    Google Scholar 

  • Jordan TE, Burns WM, Veiga R, Pángaro F, Copeland P, Kelley S, Mpodozis C (2001) Extension and basin formation in the southern Andes caused by increased convergence rate: a mid-Cenozoic trigger for the Andes. Tectonics 20:308–324

    Google Scholar 

  • Karig DE, Sharman GF (1975) Subduction and accretion in trenches. Earth Planet Sci Lett 21:209–212

    Google Scholar 

  • Kato TT (1976) The relationship between low-grade metamorphism and tectonics in the Coast Range of Central Chile. PhD thesis, University of California, Los Angeles, pp 1–238

    Google Scholar 

  • Kato TT (1985) Pre-Andean orogenesis in the Coast Ranges of central Chile. Geol Soc Am Bull 96:918–924

    Google Scholar 

  • Kay SM, Ramos V, Mpodozis C, Sruoga P (1989) Late Paleozoic to Jurassic silicic magmatism at the Gondwana margin: analogy to the Middle Proterozoic in North America? Geology 17: 324–328

    Google Scholar 

  • Kay SM, Gorring M, Ramos, VA (2004) Magmatic sources, setting and causes of Eocene to Recent Patagonian plateau magmatism (36°S to 52°S latitude). Rev Asoc Geol Argentina 59(4):556–568

    Google Scholar 

  • Kay SM, Godoy E, Kurtz A (2005) Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the southcentral Andes. Geol Soc Am Bull 117:67–88

    Google Scholar 

  • Kemnitz H, Kramer W, Rosenau M (2005) Jurassic to Tertiary tectonic, volcanic, and sedimentary evolution of the Southern Andean intra-arc zone, Chile (38°S–39°S) a survey. N Jb Geol Paläont 236:19–42

    Google Scholar 

  • Kramer W, Siebel W, Romer RL, Haase G, Zimmer M, Ehrlichmann R (2005) Geochemical and isotopic characteristics and evolution of the Jurassic volcanic arc between Arica (18°0′S) and Tocopilla (22°S), North Chilean Coastal Cordillera. Chem Erde 65:47–78

    Google Scholar 

  • Krawczyk CM, SPOC Team (2003) Amphibious seismic survey images plate interface at 1960 Chile earthquake. EOS 84(32):301, 304–305

    Google Scholar 

  • Lara L, Moreno H (1998) Geología preliminar area de Liquiñe-Neltume, Region de Los Lagos. Mapa 13, escala 1:100.000. In: Estudio Geológico-Economico de la X Region Norte, Informe Registrado IR-98-15, Santiago de Chile

    Google Scholar 

  • Lara L, Rodríguez C, Moreno H, Pérez de Arce C (2001) Geochronología K-Ar y geoquímica del volcanismo plioceno superiorpleistoceno de los Andes del sur (39–42°S). Rev Geol Chile 28(1): 67–90

    Google Scholar 

  • Latorre CO, Vattuone ME, Linares E, Leal PR (2001) K-Ar ages of rocks from Lago Aluminé, Rucachoroi and Quillen, North Patagonian Andes, Neuquén, Republica Argentina. III South American Symposium on Isotope Geology, Abstract Vol, pp 577–580

    Google Scholar 

  • Laursen J, Scholl DW, von Huene R (2002) Neotectonic deformation of the central Chile margin: deepwater forearc basin formation in response to hot spot ridge and seamount subduction. Tectonics 21(5): doi 10.1029/2001TC901023

    Google Scholar 

  • Lavenu A, Cembrano J (1999) Compressional-and transpressionals-tress pattern for Pliocene and Quaternary brittle deformation in fore arc and intra-arc zones (Andes of Central and Southern Chile). J Struct Geol 21(12):1669–1691

    Google Scholar 

  • Legarreta L, Gulisano CA (1989) Análisis estratigráfico secuencial de la Cuenca Neuquina (Triásico superior-Terciario inferior, Argentina). In: Chebli G, Spalletti L (eds) Cuencas Sedimentarias Argentinas. Universidad Nacional de Tucumán, Serie Correlación Geológica 6:221–243

    Google Scholar 

  • Legarreta L, Uliana MA (1991) Jurassic-Cretaceous marine oscillations and geometry of back arc basin fill, Central Argentine Andes. In: Macdonald DIM (ed) Sea level changes at active plate margins: process and product. Int Assoc Sedimentol Spec Pub 12: 429–450

    Google Scholar 

  • Legarreta L, Uliana MA (1996) The Jurassic succession in west-central Argentina: stratal patterns, sequences and paleogeographic evolution. Palaeogeog Palaeoclimat Palaeoecol 120:303–330

    Google Scholar 

  • Le Roux JP, Elgueta S (2000) Sedimentologic development of a Late Oligocene-Miocene forearc embayment, Valdivia Basin Complex, southern Chile. Sediment Geol 130:27–44

    Google Scholar 

  • Lewis KB, Collot J-Y, Lallemand SE (1998) The dammed Hikurangi Trough: a channel-fed trench blocked by subducting seamounts and their wake avalanches (New Zealand-France GeodyNZ Project). Basin Res 10(4):441–468

    Google Scholar 

  • Linares E, Cagnoni MC, Do Campo M, Ostera HA (1988) Geochronology of metamorphic and eruptive rocks of southeastern Neuquén and northwestern Río Negro Provinces, Argentine Republic. J S Am Earth Sci 1(1):53–61

    Google Scholar 

  • Lliboutry L (1999) Glaciers of the Wet Andes. In: Williams, RS, Ferrigno JG (eds) Satellite image atlas of glaciers of the world: South America. US Geol Survey Prof P 1386-I, http://pubs.usgs.gov/prof/p1386i/index.html

    Google Scholar 

  • Lohrmann J (2002) Identification of parameters controlling the accretive and tectonically erosive mass-transfer mode at the South-Central and North Chilean forearc using scaled 2D sandbox experiments. GeoForschungsZentrum Potsdam Scientific Technical Report STR02/10, http://www.gfz-potsdam.de/bib/zbstr.htm

    Google Scholar 

  • Lonsdale P (2005) Creation of the Cocos and Nazca plates by fission of the Farallon plate. Tectonophysics 404:237–264

    Google Scholar 

  • López de Luchi MG, Ostera H, Cerredo ME, Cagnoni MC, Linares E (2000) Permian magmatism in Sierra de Mamil Choique, North Patagonian Massif, Argentina. IX Congreso Geológico Chileno, Actas 2(4):750–754

    Google Scholar 

  • López-Escobar L, Cembrano J, Moreno H (1995) Geochemistry and tectonics of the Chilean Southern Andes basaltic Quaternatry volcanism (37°–46°S). Rev Geol Chile 22(2):219–234

    Google Scholar 

  • López-Escobar L, Vergara M (1997) Eocene-Miocene longitudinal depression and Quaternary volcanism in the Southern Andes, Chile (33–42.5°S). Rev Geol Chile 24:227–244

    Google Scholar 

  • López Gamundí O, Rossello EA (1993) Devonian-Carboniferous unconformity in Argentina and its relation to the Eo-Hercynian orogeny in southern South America. Geol Rundsch 82:136–147

    Google Scholar 

  • López Gamundí O, Limarino CO, Cesari SN (1992) Late Paleozoic paleoclimatology of central west Argentina. Palaeogeog Palaeoclimat Palaeoecol 91:305–329

    Google Scholar 

  • Lucassen F, Becchio R, Harmon R, Kasemann S, Franz G, Trumbull R, Wilke H-G, Romer RL, Dulski P (2001) Composition and density model of the continental crust at an active continental margin — the Central Andes between 21° and 27°S. Tectonophysics 341: 195–223

    Google Scholar 

  • Lucassen F, Trumbull R, Franz G, Creixell C, Vásquez P, Romer RL, Figueroa O (2004) Distinguishing crustal recycling and juvenile additions at active continental margins: the Paleozoic to recent compositional evolution of the Chilean Pacific margin (36°–41°S). J S Am Earth Sci 17:103–119

    Google Scholar 

  • Lucassen F, Franz G, Wiedicke M (2005) Complete recycling of the magmatic arc in Chile (36°–39°S) — evidence from chemical and isotopic composition of (sub)recent trench sediments. Int Symposium on Andean Geodynamics, Barcelona, Abstract Volume

    Google Scholar 

  • Lüth S, Wigger P, ISSA Research Group (2003) A crustal model along 39°S from a seismic refraction profile: ISSA (2000). Rev Geol Chile 30(1):83–101

    Google Scholar 

  • Martin MW, Kato TT, Rodriguez C, Godoy E, Duhart P, McDonough M, Campos A (1999) Evolution of the late Paleozoic accretionary complex and overlying forearc-magmatic arc, south central Chile (38°–41°S): Constraints for the tectonic setting along the southwestern margin of Gondwana. Tectonics 18(4):582–605

    Google Scholar 

  • McMillan NJ, Harmon RS, Moorbath S, López-Escobar L, Strong DF (1989) Crustal sources involved in continental arc magmatism: A case study of volcano Mocho-Choshuenco, southern Chile. Geology 17:1152–1156

    Google Scholar 

  • McNulty B, Farber D, Wallace G, López R, Palacios O (1998) Role of plate kinematics and plate slip vector partitioning in continental magmatic arcs: evidence from the Cordillera Blanca, Peru. Geology 26(9):827–830

    Google Scholar 

  • Meissner R, Mooney W (1998) Weakness of the continental lower crust: a condition for delamination, uplift, and escape. Tectonophysics 296:47–60

    Google Scholar 

  • Melnick D, Echtler HP (2006) Morphotectonic and geologic digital map compilations of the South-Central Andes (36°–42° S). In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 565–568, this volume

    Google Scholar 

  • Melnick D, Rosenau M, Folguera A, Echtler HP (2006) Neogene tectonic evolution of the Neuquén Andes western flank (37–39°S). In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39°S lat). Geol Soc Am Spec P 407:73–95

    Google Scholar 

  • Mercer JH, Sutter JF (1982) Late Miocene-earliest Pliocene glaciation in southern Argentina: implications for global ice-sheet history. Paleogeog Paleoclimat Paleoecology 38:185–206

    Google Scholar 

  • Meschede M, Zweigel P, Kiefer E (1999) Subsidence and extension at a convergent plate margin: evidence for subduction erosion off Costa Rica. Terra Nova 11:112–117

    Google Scholar 

  • Mordojovich C (1981) Sedimentary basins of Chilean Pacific offshore. In: Halbouty MT (eds) Energy resources of the Pacific region. AAPG Stud Geol 12, pp 63–82

    Google Scholar 

  • Mpodozis C, Ramos V, (1989) The Andes of Chile and Argentina. In: Ericksen GE, Cañas Pinochet MT, Reinemund JA (eds) Geology of the Andes and its Relation to Hydrocarbon and Mineral Resources, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, Vol. 11, Houston, Texas, pp 59–90

    Google Scholar 

  • Munizaga F, Hervé F, Drake R, Pankhurst RJ, Brook M, Snelling N (1988) Geochronology of the Lake Region of south-central Chile (39°–42°S): Preliminary results. J S Am Earth Sci 1:09–316 DOI 10.1016/0895-9811(88)90009-0

    Google Scholar 

  • Muñoz J, Troncoso R, Duhart P, Crignola P, Farmer L, Stern CR (2000) The relation of the mid-Tertiary coastal magmatic belt in south-central Chile to the late Oligocene increase in plate convergence rate. Rev Geol Chile 27:177–203

    Google Scholar 

  • Nelson ST, Davidson JP, Heizler MT, Kowallis BJ (1999) Tertiary tectonic history of the southern Andes: the subvolcanic sequence to the Tatara-San Pedro volcanic complex, lat 36°S. Geol Soc Am Bull 111:1387–1404

    Google Scholar 

  • Nielsen SN (in press) The Triassic Santa Juana Formation at the lower Biobío River, south central Chile. J S Am Earth Sci

    Google Scholar 

  • Pankhurst RJ (1990) The Paleozoic and Andean magmatic arcs of West Antarctica and southern South America. In: Kay SM, Rapela CW (eds) Plutonism from Antarctica to Alaska. Geol Soc Am Spec P 241:1–7

    Google Scholar 

  • Pankhurst RJ, Rapela CW, Caminos R, Llambias E, Parica C (1992a) A revised age for the granites of the central Somuncura Batholith, North Patagonian Massif. J S Am Earth Sci 5:321–325

    Google Scholar 

  • Pankhurst RJ, Hervé F, Rojas L, Cembrano J (1992b) Magmatism and tectonics in continental Chiloé, Chile (42°–42°30’S). Tectonophysics 205:283–294

    Google Scholar 

  • Pankhurst RJ, Weaver SD, Hervé F, Larrondo P (1999) Mesozoic-Cenozoic evolution of the North Patagonian Batholith in Aysén, southern Chile. J Geol Soc, London, 156:673–694

    Google Scholar 

  • Pankhurst RJ, Rapela CW, Loske WP, Márquez M, Fanning CM (2003) Chronological study of the pre-Permian basement rocks of southern Patagonia. J S Am Earth Sci 16:27–44

    Google Scholar 

  • Parada MA (1975) Estudio geológico de los alrededores de los lagos Calafquén, Panguipulli y Riñihue, Provincia de Valdivia. Memoria de título, Departamento de Geologia, Universidad de Chile, Santiago

    Google Scholar 

  • Parada MA (1990) Granitoid plutonism in central Chile and its geodynamic implications: a review. Geol Soc Am Spec P 241:51–66

    Google Scholar 

  • Potent S (2003) Kinematik und Dynamik neogener Deformationsprozesse des südzentralchilenischen Subduktionssystems, nördlichste Patagonische Anden (37°–40°S). PhD thesis, Universität Hamburg

    Google Scholar 

  • Rabassa J, Clapperton CM (1990) Quaternary glaciations of the Southern Andes. Quat Sci Rev 9:153–174

    Google Scholar 

  • Ramos VA (1982) Las ingresiones pacificas del Terciario en el norte de la Patagonia. III Congreso Geológico Chileno, Actas 1:262–288

    Google Scholar 

  • Ramos V (2000) The Southern Central Andes. In: Cordani UG, Milani EJ, Thomaz Filho A, Campos DA (eds) Tectonic evolution of South America, Rio de Janeiro, pp 561–604

    Google Scholar 

  • Ramos VA, Aleman A (2000) Tectonic evolution of the Andes. In: Cordani UG, Milani EJ, Thomaz Filho A, Campos DA (eds) Tectonic evolution of South America. Rio de Janeiro, pp 635–685

    Google Scholar 

  • Ramos V, Kay SM (1991) Triassic rift basalts of the Cuyo basin, central Argentina. In: Harmon RS, Rapela CW (eds) Andean magmatism and its tectonic setting. Geol Soc Am Spec Pub 265:79–91

    Google Scholar 

  • Rapalini AE (1998) Syntectonic magnetization of the Mid-Paleozoic Sierra Grande Formation: further constraints on the tectonic evolution of Patagonia. J Geol Soc 155:105–114

    Google Scholar 

  • Rapela CW, Kay SM (1988) Late Paleozoic to Recent magmatic evolution of northern Patagonia. Episodes 11:175–82

    Google Scholar 

  • Rapela CW, Pankhurst RJ (1992) The granites of northern Patagonia and the Gastre Fault System in relation to the break-up of Gondwana. In: Storey BC, Alabaster T, Pankhurst RJ (eds) Magmatism and the causes of continental break-up. Geol Soc Spec Pub 68:209–220

    Google Scholar 

  • Rapela CW, Pankhurst RJ (1996) Monzonite suites: the innermost Cordilleran plutonism in Patagonia. Trans Royal Soc Edinburgh Earth Sci 87:193–203

    Google Scholar 

  • Rapela CW, Spalletti LA, Merodio JC, Aragón E (1988) Temporal evolution and spatial variation of early Tertiary volcanism in the Patagonian Andes (40°S–42°30’S). J S Am Earth Sci 1:75–88

    Google Scholar 

  • Rapela CW, Pankhurst RJ, Harrison SM (1992) Triassic ‘Gondwana’ granites of the Gastre district, North Patagonian Massif. Trans Royal Soc Edinburgh Earth Sci 83:291–304

    Google Scholar 

  • Rapela CW, Pankhurst RJ, Fanning CM, Hervé F (2005) Pacific subduction coeval with the Karoo mantle plume: the Early Jurassic Subcordilleran Belt of northwestern Patagonia. Geol Soc Spec Pub 246:217–239

    Google Scholar 

  • Reymer A, Schubert G (1984) Phanerozoic addition rates to the continental crust and crustal growth. Tectonics 3:63–77

    Google Scholar 

  • Riley TR, Leat PT, Pankhurst RJ, Harris C (2001) Origins of large volume rhyolitic volcanism in the Antarctic Peninsula and Patagonia by crustal melting. J Petrol 42:1043–1065

    Google Scholar 

  • Rolando AP, Hartmann LA, Santos JOS, Fernandez RR, Etcheverry RO, Schalamuk IA, McNaughton NJ (2002) SHRIMP zircon U-Pb evidence for extended Mesozoic magmatism in the Patagonian Batholith and assimilation of Archean crustal components. J S Am Earth Sci 15:267–283

    Google Scholar 

  • Rosenau MR (2004) Tectonics of the Southern Andean Intra-arc Zone (38°–42°S). PhD thesis, Freie Universität Berlin, http://www.diss.fu-berlin.de/2004/280/index.html

    Google Scholar 

  • Rosenau M, Melnick D, Echtler H (2006) Kinematic constraints on intra-arc shear and strain partitioning in the Southern Andes between 38° S and 42° S latitude. Tectonics 25(4), TC4013

    Google Scholar 

  • Sarin MM, Krishnaswamy S, Dilli K, Somayajulu BLK, Moore WS (1989) Major ion chemistry of Ganga-Brahmaputra river system: weathering processes and fluxes of the Bay of Bengal. Geochim Cosmochim Acta 53:997–1009

    Google Scholar 

  • Sato AM, Tickyj H, Llambias EJ, Sato E (2000) The Las Matras tonalitic-trondhjemitic pluton, central Argentina: Grenvillian-age constraints, geochemical characteristics, and regional implications. J S Am Earth Sci 13:587–610

    Google Scholar 

  • Seifert W, Rosenau M, Echtler H (in press) Crystallization depths of granitoids of South Central Chile estimated by Al-in-hornblende geobarometry: implications for mass transfer processes along the active continental margin. N Jb Geol Paläont

    Google Scholar 

  • SERNAGEOMIN (2003) Mapa Geológico de Chile: versión digital, No. 4 (CD-ROM, versión 1.0, 2003). Servicio Nacional de Geología y Minería, Santiago de Chile

    Google Scholar 

  • Sigmarsson O, Chmeleff J, Morris J, López-Escobar L (2002) Origin of 226Ra-230Th disequilibria in arc lavas from southern Chile and implications for magma transfer time. Earth Planet Sci Lett 196:189–196

    Google Scholar 

  • Smith WHF, Sandwell DT (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science 277:1956–1962

    Google Scholar 

  • Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature 434:590–597

    Google Scholar 

  • Somoza R (1998) Updated Nazca (Farallon)-South America relative motions during the last 40 My: implications for the mountain building in the central Andean region. J S Am Earth Sci 11:211–215

    Google Scholar 

  • Stern CR (1989) Pliocene to Present migration of the volcanic front, Andean Southern Volcanic Zone. Rev Geol Chile 16(2):145–162

    Google Scholar 

  • Stern CR (2004) Active Andean volcanism: its geologic and tectonic setting. Rev Geol Chile 31(2):161–206

    Google Scholar 

  • Stinnesbeck W (1986) Zu den faunistischen und palökologischen Verhältnissen in der Quiriquina Formation (Maastrichtium) Zentral-Chiles. Palaeontographica A194(4–6):99–237

    Google Scholar 

  • Suárez M, Bell CM (1992) Triassic rift related sedimentary basins in northern Chile (24°–29°S). J S Am Earth Sci 6:109–121

    Google Scholar 

  • Suárez M, Emparán C (1995) The stratigraphy, geochronology and paleophysiography of a Miocene fresh-water interarc basin, southern Chile. J S Am Earth Sci 8:17–31

    Google Scholar 

  • Suárez M, Emparán C (1997) Hoja Curacautín, regiones de la Araucanía y del BioBío. Carta Geológica de Chile, No. 71. Servicio Nacional de Geología y Minería, Santiago de Chile

    Google Scholar 

  • Tarney J, Jones CE (1994) Trace element geochemisty of orogenic igneous rocks and crustal growth models. J Geol Soc 151:855–868

    Google Scholar 

  • Tassara A, Yáñez G (2003) Relación entre el espesor elástico de la litosfera y la segmentación tectónica del margen andino (15–47°S). Rev Geol Chile 30(2):159–186

    Google Scholar 

  • Taylor SR (1967) The origin and growth of continents. Tectonophysics 4:17–34

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford

    Google Scholar 

  • Tebbens SF, Cande S (1997) Southeast Pacific tectonic evolution from Early Oligocene to Present. J Geophys Res 102:12035–12059

    Google Scholar 

  • Thomson SN, Hervé F (2002) New time constraints for the age of metamorphism at the ancestral Pacific Gondwana margin of southern Chile (42–52°S). Rev Geol Chile 29(2):151–165

    Google Scholar 

  • Thornburg TM, Kulm LD, Hussong DM (1990) Submarine-fan development in the southern Chile Trench: a dynamic interplay of tectonics and sedimentation. Geol Soc Am Bull 102(12):1658–1680

    Google Scholar 

  • Torsvik TH, Cocks LRM (2004) Earth geography from 400 to 250 Ma: a paleomagnetic, faunal and facies review. J Geol Soc, London, 161:555–572

    Google Scholar 

  • Uliana MA, Legarreta L (1993) Hydrocarbon habitat in a Triassic to Cretaceous sub-Andean setting: Neuquén basin, Argentina. J Petrol Geol 16(4):397–420

    Google Scholar 

  • Varela R, Teixeira W, Cingolani C, Dalla Salda L (1994) Edad rubidioestroncio de granitoids de Aluminé-Rahue, Cordillera Norpatagonica, Neuquén, Argentina. VII Congreso Geológico Chileno, Concepción, Actas II, pp 1254–1258

    Google Scholar 

  • Vergani GD, Tankard AJ, Belotti HJ, Welsink HJ (1995) Tectonic evolution and paleogeography of the Neuquén Basin, Argentina. In: Tankard AJ, Suárez R, Welsink HJ (eds) Petroleum basins of South America. Am Assoc Petr Geol Mem 62, pp 383–402

    Google Scholar 

  • Völker D, Wiedicke M, Ladage S, Gaedicke C, Reichert C, Rauch K, Kramer W, Heubeck C (2006) Latitudinal variation in sedimentary processes in the Peru-Chile trench off Central Chile. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 193–216, this volume

    Google Scholar 

  • Von Gosen W, Loske W (2004) Tectonic history of the Calcatapul Formation, Chubut province, Argentina, and the “Gastre fault system”. J S Am Earth Sci 18:73–88

    Google Scholar 

  • von Huene R, Lallemand S (1990) Tectonic erosion along the Japan and Peru convergent margins. Geol Soc Am Bull 102(6):704–720

    Google Scholar 

  • von Huene R, Scholl DW (1991) Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev Geophys 29(3):279–316

    Google Scholar 

  • von Huene R, Corvalán J, Flueh ER, Hinz K, Korstgard J, Ranero CR, Weinrebe W (1997) Tectonic control of the subducting Juan Fernández Ridge on the Andean margin near Valparaiso, Chile. Tectonics 16(3):474–488

    Google Scholar 

  • Wells RE, Blakely RJ, Sugiyama Y, Scholl DW, Dinterman PA (2003) Basin-centered asperities in great subduction zone earthquakes — a link between slip, subsidence and subduction erosion? J Geophys Res 108(B10): doi 10.1029/2002JBOO2072

    Google Scholar 

  • Willner A, Hervé F, Massonne H-J (2000) Mineral chemistry and pressure-temperature evolution of two contrasting high-pressure-low-temperature belts in the Chonos archipelago, Southern Chile. J Petrol 41:309–330

    Google Scholar 

  • Willner AP, Pawlig S, Massonne HJ, Hervé F (2001) Metamorphic evolution of spessartine quartzites (Coticules) in the high-pressure, low temperature complex at Bahia Mansa, coastal Cordillera of South-Central Chile. Can Mineral 39:1547–1569

    Google Scholar 

  • Willner AP, Glodny J, Gerya TV, Godoy E, Massonne H-J (2004) A counterclockwise PTt-path of high pressure-low temperature rocks from the Coastal Cordillera accretionary complex of South Central Chile: constraints for the earliest stage of subduction mass flow. Lithos 75:283–310

    Google Scholar 

  • Willner AP, Thomson SN, Kröner A, Wartho J-A, Wijbrans JR, Hervé F (2005) Time markers for the evolution and exhumation history of a Late Paleozoic paired metamorphic belt in North-Central Chile (34°–35°30’S). J Petrol doi 10.1093/petrology/egi036

    Google Scholar 

  • Wynn RB, Weaver PPE, Masson DG, Stow DAV (2002) Turbidite depositional architecture across three interconnected deep-water basins on the north-west African margin. Sedimentology 49(4):669–695

    Google Scholar 

  • Yáñez GA, Ranero CR, von Huene R, Díaz J (2001) Magnetic anomaly interpretation across the southern central Andes (32°–34°S): The role of the Juan Fernández Ridge in the Late Tertiary evolution of the margin. J Geophys Res 106(B4):6325–6345

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Glodny, J. et al. (2006). Long-Term Geological Evolution and Mass-Flow Balance of the South-Central Andes. In: Oncken, O., et al. The Andes. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-48684-8_19

Download citation

Publish with us

Policies and ethics