Skip to main content

Subduction Erosion — the “Normal” Mode of Fore-Arc Material Transfer along the Chilean Margin?

  • Chapter
The Andes

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

Subduction erosion shapes at least half of the world’s convergent margins. However, its rates, and modes as well as spatial and temporal variation are poorly understood. Based on a compilation of published and newly derived estimates of subduction erosion along the Chilean part of the Andean margin, we discuss possible loci and modes of subduction erosion and also address the potential of subducting topographic highs for accelerating subduction erosion.

We also evaluate different approaches for estimating subduction erosion. Rates of subduction erosion computed from the offshore subsidence record and geometry of the margin are robust and, thus, reveal information on the regional variation in the efficiency of subduction erosion. Estimates of subduction erosion rates based on the migration of the volcanic arc front may be erroneous over short (neotectonic) timescales owing to the episodic nature of the volcanic-arc-front migration.

Information about the processes underlying subduction erosion comes from both natural observations and scaled physical experiments. Hydrofracturing at the base of the overriding fore-arc crust was identified as a process most convincingly explaining basal subduction erosion.

Subduction erosion off northern Chile is faster than that off Peru and Central America, and also faster than magmatic addition, thus making the central Andean subduction zone a site of net crustal loss. Consequently, the north Chilean part of the Andean margin is inferred to be a site of net destruction of continental crust.

From the geological record, we demonstrate that the south Chilean subduction zone, which has been in accretive mode since the Pliocene, has experienced subduction erosion since at least the middle Miocene at rates similar to the north. The change in mode is related to the doubling of sediment flux into the trench after the onset of continental glaciation of southern Chile at ∼5 Ma. Hence, we identify sediment flux as the key variable controlling the mode of long-term material transfer, whereas ridge collision causes subduction erosion rates to exceed background values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam J, Reuther C-D (2000) Crustal dynamics and active fault mechanics during subduction erosion. Application of frictional wedge analysis to the north Chilean forearc. Tectonophysics 321:297–325

    Google Scholar 

  • Adam J, Kukowski N, Lohrmann J (2000) Mechanics and mass transfer patterns of tectonic erosive convergent margins: quantitative results from analogue sandbox models and their implications for natural forearc systems. AGU Fall Meeting, EOS 81/F

    Google Scholar 

  • Adriasola AC, Thomson SN, Brix MR, Hervé F, Stöckhert B (2005) Postmagmatic cooling and late Cenozoic denudation of the North Patagonian in the Los Lagos region of Chile, 41°S to 42.15°S. Int J Earth Sci, doi 10.10.1007/s00531-005-0027

    Google Scholar 

  • Allmendinger RW, Figueroa D, Snyder D, Beer J, Mpodozis C, Isacks BL (1990) Foreland shortening and crustal balancing in the Andes at 30°S latitude. Tectonics 9:789–809

    Google Scholar 

  • ANCORP Working Group (2003) Seismic imaging of a convergent continental margin and plateau in the central Andes (Andean Continental Research Project 1996, ANCORP96). J Geophys Res 108(B7): doi 10.1029/2002JB001771

    Google Scholar 

  • Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca-South America Euler vector. Earth Planet Sci Lett 171:329–334

    Google Scholar 

  • Atherton MP, Petford N (1996) Plutonism and the growth of Andean crust at 9°S from 100 to 3 Ma. J S Am Earth Sci 9:1–9

    Google Scholar 

  • Bangs NL, Cande SC (1997) Episodic development of a convergent margin inferred from structures and processes along the southern Chile margin. Tectonics 16:489–503

    Google Scholar 

  • Behrmann JH, Kopf A (2001) Balance of tectonically accreted and subducted sediment at the Chile Triple Junction. Int J Earth Sci 90:753–768

    Google Scholar 

  • Bourgois J, Martin H, Lagabrielle Y, Le Moigne J, Frutos Jara J (1996) Subduction erosion related to spreading-ridge subduction: Taitao peninsula (Chile margin triple junction area). Geology 24:723–726

    Google Scholar 

  • Byerlee JD (1993) Model for episodic flow of high-pressure water in fault zones before earthquakes. Geology 21:303–306

    Google Scholar 

  • Byrne DE, Wang W-H, Davis DM (1993) Mechanical role of backstops in the growth of forearcs. Tectonics 12:123–144

    Google Scholar 

  • Charlton TR (1988) Tectonic erosion and accretion in steady-state trenches. Tectonophysics 149:233–243

    Google Scholar 

  • Clift PD, MacLeod CL (1999) Slow rates of subduction erosion estimated from subsidence and tilting of the Tonga forearc. Geology 27:411–414

    Google Scholar 

  • Clift PD, Vannucchi P (2004) Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev Geophys 42: doi 10.1029/2003RG000127

    Google Scholar 

  • Clift PD, Pecher IA, Kukowski N, Hampel A (2003) Tectonic erosion of the Peruvian forearc, Lima Basin, by subduction and Nazca Ridge collision. Tectonics 22(3) doi 10.1029/2002TC001386

    Google Scholar 

  • Cobbing EJ (1999) The Coastal Batholith and other aspects of Andean magmatism in Peru. In: Castro A, Fernandez C, Vigneresse JL (eds) Understanding granites: integrating new and classical techniques. Geol Soc Lond Spec Pub 168:111–122

    Google Scholar 

  • Davis D, Suppe J, Dahlen FA (1983) Mechanics of fold-and-thrust Belts and accretionary wedges. J Geophys Res 88:1153–1172

    Google Scholar 

  • Diaz-Naveas JL (1999) Sediment subduction and accretion at the Chilean convergent margin between 35° and 40°S. PhD thesis, Christian-Albrechts-Universität Kiel

    Google Scholar 

  • Dimalanta C, Taira A, Yumul GP, Tokuyama H, Mochizuki K (2002) New rates of western Pacific island arc magmatism from seismic and gravity data. Earth Planet Sci Lett 202:105–115

    Google Scholar 

  • Dominguez S, Lallemand SE, Malavieille J, von Huene R (1998) Upper plate deformation associated with seamount subduction. Tectonophysics 293:207–224

    Google Scholar 

  • Ellis S, Schreurs G, Panien M (2004) Comparisons between analogue and numerical models of thrust wedge development. J Struct Geol 26:1659–1675

    Google Scholar 

  • Encinas A, Finger K, Nielsen S, Lavenu A, Buatois L, Peterson D (2005) Late Miocene coastal subsidence in Central Chile: tectonic implications. 6th International Symposium of Andean Geodynamics, Barcelona, IRD, pp 246–249

    Google Scholar 

  • England P, Engdahl R, Thatcher W (2004) Systematic variation in the depths of slabs beneath arc volcanoes. Geophys J Int 156:377–408

    Google Scholar 

  • Fisher DM (1996) Fabrics and veins in the forearc: a record of cyclic fluid flow at depths of <15 km. In: Bebout GE, Scholl DW, Kirby SH, Platt JP (1996) Subduction — top to bottom. AGU Geophysical Monograph 96:75–90

    Google Scholar 

  • Flueh ER, Vidal N, Ranero CR, Hojka A, von Huene R, Bialas J, Hinz K, Cordoba D, Dañobeitia, Zelt C (1998) Seismic investigation of the continental margin off-and onshore Valparaiso, Chile. Tectonophysics 288:251–263

    Google Scholar 

  • Francis PW, Hawkesworth CJ (1994) Late Cenozoic rates of magmatic activity in the Central Andes and their relationships to continental crust formation and thickening. J Geol Soc Lond 151:845–854

    Google Scholar 

  • Francis PW, Rundle CC (1976) Rates of production of the main Andean magma types. Geol Soc Am Bull 87:474–480

    Google Scholar 

  • Fruehn J, von Huene R, Fisher MA (1999) Accretion in the wake of terrane collision: the Neogene accretionary wedge off Kenai Peninsula. Tectonics 18:263–277

    Google Scholar 

  • Glodny J, Echtler H, Figueroa O, Franz G, Gräfe K, Kemnitz H, Kramer W, Krawczyk C, Lohrmann J, Lucassen F, Melnick D, Rosenau M, Seifert W (2006) Long-term geological evolution and mass-flow balance of the South-Central Andes. In: Oncken O, Chong G, Franz G, Giese P, Gätze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 401–428, this volume

    Google Scholar 

  • González E (1989) Hydrocarbon resources in the coastal zone of Chile. In: Ericksen GE, Cañas Pinochet MT, Reinemund JA (eds) Geology of the Andes and its relation to hydrocarbon and mineral resources. Circum-Pacific Council for Energy and Mineral Resources Earth Science Series 11:383–404

    Google Scholar 

  • Gorring ML, Kay SM, Zeitler PK, Ramos VA, Rubiolo D, Fernandez ML, Panza JL (1997) Neogene Patagonian plateau lavas: continental magmas associated with ridge collision at the Chile triple junction. Tectonics 16:1–17

    Google Scholar 

  • Goy JL, Macharé J, Ortlieb L, Zazo C (1992) Quaternary shorelines in southern Peru: a record of global sea-level fluctuations and tectonic uplift in Chala Bay. Quaternary International 15/16:99–112

    Google Scholar 

  • Grotzki NR, Flueh ER, Reichert CJ, Patzwahl R, Mechie J, Giese P (1998) Modeling of seismic wide angle refraction/reflection data. In: Hinz K (ed) Crustal investigations off-and onshore Nazca/Central Andes (CINCA) Rep BGR 117.613:69–102

    Google Scholar 

  • Gulick SPS, Bangs NLB, Shipley TH, Nakamura Y, Moore G, Kuramoto S (2004) Three-dimensional architecture of the Nankai accretionary prism’s imbricate thrust zone off Cape Mutoro, Japan: prism reconstruction via en echelon thrust propagation. J Geophys Res 109: doi 10.1029/2003JB002654

    Google Scholar 

  • Gutscher M-A, Kukowski N, Malavieille J, Lallemand SE (1998a) Material transfer in accretionary wedges from analysis of a systematic series of analog experiments. J Struct Geol 20:407–416

    Google Scholar 

  • Gutscher M-A, Kukowski N, Malavieille J, Lallemand SE (1998b) Episodic imbricate thrusting and underthrusting: analogue experiments and mechanical analysis applied to the Alaskan accretionary wedge. J Geophys Res 103:10161–10176

    Google Scholar 

  • Hartley AJ, Jolley EJ (1995) Tectonic implications of Late cenozoic sedimentation from the Coastal Cordillera of northern Chile (22–24°S). J Geol Soc Lond 152:51–63

    Google Scholar 

  • Hartley AJ, May G, Chong G, Turner P, Kape SJ, Jolley EJ (2000) Development of a continental forearc: A Cenozoic example from the Central Andes, northern Chile. Geology 28:331–334

    Google Scholar 

  • Hartley AJ, Chong G, Houston J, Mather AE (2005) 50 million years of climatic stability: evidence from the Atacama Desert, northern Chile. J Geol Soc London 162:421–424

    Google Scholar 

  • Haschke M, Günther A (2003) Balancing crustal thickening in arc by tectonic vs. magmatic means. Geology 31:933–936

    Google Scholar 

  • Hilde TWC (1983) Sediment subduction versus accretion around the Pacific. Tectonophysics 99:381–399

    Google Scholar 

  • Holbrook WS, Lizzaralde D, McGeary S, Bangs N, Diebold J (1999) Structure and composition of the Aleutian island arc and implicationsfor crustal growth. Geology 27:31–34

    Google Scholar 

  • Hsu JT (1992) Quaternary uplift of the Peruvian coast related to the subduction of the Nazca Ridge: 13.5°S to 15.6°S. Quat Int 15–16:87–9

    Google Scholar 

  • Hubbert MK (1937) Theory of scale models as applied to the study of geological structures. Geol Soc Am Bull 48:1459–1520

    Google Scholar 

  • Husen S, Kissling E (2001) Postseismic fluid flow after the large subduction earthquake of Antofagasta, Chile. Geology 29(9):847–850

    Google Scholar 

  • Jarrard RD (1986) Relations among subduction parameters. Rev Geophys 24:217–284

    Google Scholar 

  • Jordan TE, Burns WM, Veiga R, Pángaro F, Copeland P, Kelley S, Mpodozis C (2001) Extension and basin formation in the southern Andes caused by increased convergence rate: a mid-Cenozoic trigger for the Andes. Tectonics 20:308–324

    Google Scholar 

  • Kay RW (1980) Volcanic arc magmas: implications of a melting-mixing model for element recycling in the crust-upper mantle system. J Geol 88:497–522

    Google Scholar 

  • Kay SM, Godoy E, Kurtz A (2005) Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the southcentral Andes. Bull Geol Soc Am 117(1/2):67–88

    Google Scholar 

  • Kopp H, Kukowski N (2003) Backstop geometry and accretionary mechanics of the Sunda margin. Tectonics 22: doi 1029/2002TC001420

    Google Scholar 

  • Kopp C, Fruehn J, Flueh ER, Reichert C, Kukowski N, Bialas J, Klaeschen D (2000) Structure of the Makran subduction zone from wideangle and reflection data. Tectonophysics 329:171–191

    Google Scholar 

  • Kopp H, Flueh ER, Papenberg C, Klaeschen D (2004) Seismic investigations of the O’Higgins Seamount Group and Juan Fernandez Ridge: aseismic ridge emplacement and lithosphere hydration. Tectonics 23: doi 10.1029/2003TC001590

    Google Scholar 

  • Krabbenhöft A, Bialas J, Kopp H, Kukowski N, Hübscher C (2004) Crustal structure of the Peruvian continental margin from wideangle seismic studies. Geophys J Int 159:749–964

    Google Scholar 

  • Krawczyk CM, Mechie J, Lüth S, TaĂárová Z, Wigger P, Stiller M, Brasse H, Echtler HP, Araneda M, Bataille K (2006) Geophysical signatures and active tectonics at the south-central Chilean margin. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 171–192, this volume

    Google Scholar 

  • Kudrass HR, Von Rad U, Seyfried H, Andruleit H, Hinz K, Reichert C (1998) Age and facies of sediments of the northern Chilean continental slope — Evidence for intense vertical movements. In: Hinz K (ed) Crustal investigations off-and onshore Nazca/Central Andes (CINCA). Bundesanstalt für Geowissenschaften und Rohstoffe, Report 117.613:170–196

    Google Scholar 

  • Kukowski N, von Huene R, Malavieille J, Lallemand SE (1994) Sediment accretion against a buttress beneath the Peruvian continental margin as simulated with sandbox modeling. Geol Rundschau 83:822–831

    Google Scholar 

  • Kukowski N, Adam J, Lohrmann J (1999) Erosive mass transfer at convergent margins: constraints from analog models and application of Coulomb wedge analysis. ISAG 99:400–404

    Google Scholar 

  • Kukowski N, Lohrmann J, Hampel A (2004a) Visage of a tectonically erosive margin: interplay of geophysical data and analogue modelling. Nordisk Geologisk Vinter Møe, Uppsala

    Google Scholar 

  • Kukowski N, Hampel A, Bialas J, Huebscher C (2004b) Transtensional tectonics caused by subduction erosion at the offshore Peruvian margin. AGU Fall Meeting, San Francisco CA

    Google Scholar 

  • Kulm LD, Schweller WJ, Masias A (1977) A preliminary analysis of the subduction process along the Andean continental margin near 6° to 45° S. In: Talwani, Pitman WC III (eds) Island arcs, deep-sea trenches, and back-arc Basins, AGU Maurice Ewing Series, 1, pp 285–30

    Google Scholar 

  • Lallemand SE, Culotta R, von Huene R (1989) Subduction of the Daiichi Kashima seamount in the Japan trench. Tectonophysics 160:231–247

    Google Scholar 

  • Lallemand SE, Schnürle R, Manoussis S (1992) Reconstruction of subduction zone paleogemoetries and quantification of upper plate material losses caused by tectonic erosion. J Geophys Res 97:217–239

    Google Scholar 

  • Lallemand SE, Schnürle P, Malavieille J (1994) Coulomb theory applied to accretionary and nonaccretionary wedges: possible causes for tectonic erosion and/or frontal accretion. J Geophys Res 99:12033–12055

    Google Scholar 

  • Laursen J, Scholl DW, von Huene R (2002) Neotectonic deformation of the central Chile margin deepwater forearc basin formation in response to hot spot ridge and seamount subduction. Tectonics 21(3): doi 1029/2001TC901023

    Google Scholar 

  • Lindquist KG (2004) Global topography and bathymetry grid improves research efforts. EOS 85(19):186–187

    Google Scholar 

  • Lohrmann J (2002) Identification of parameters controlling the accretive and erosive mass transfer mode at the South-Central and North Chilean forearc using 2D scaled sandbox experiments. GFZ Scientific Technical Reports STR02/10

    Google Scholar 

  • Lohrmann J, Kukowski N, Adam J, Oncken O (2003) The impact of analogue material properties on the geometry, kinematics, and dynamics of convergent sand wedges. J Struct Geol 25:1691–1711

    Google Scholar 

  • Lohrmann J, Kukowski N, Krawczyk CM, Oncken O, Sick C, Sobiesiak M, Rietbrock A (2006) Subduction channel evolution in brittle forearc wedges — a combined study with scaled sandbox experiments, seismological and reflection seismic data and geological field evidence. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 237–262, this volume

    Google Scholar 

  • Lonsdale P (2005) Creation of the Cocos and Nazca plates by fission of the Farallon plate. Tectonophysics 404:237–264

    Google Scholar 

  • Macharé J, Ortlieb L (1992) Plio-Quaternary vertical motions and the subduction of the Nazca Ridge, central coast of Peru. Tectonophysics 205:97–108

    Google Scholar 

  • Malavieille J (1984) Modélisation expérimentale des chevauchements imbriqués: application aux chaines de montagnes. Bull Soc Géol France 7:129–138

    Google Scholar 

  • Marone C (1998) Laboratory-derived friction laws and their application to seismic faulting. Ann Rev Earth Planet Sci 26:643–696

    Google Scholar 

  • Marquardt A, Lavenu A, Ortlieb L, Godoy E, Comte D (2004) coastal neotectonics in southern Central Andes: uplift and deformation of marine terraces in Northern Chile (27°S). Tectonophysics 394:193–219

    Google Scholar 

  • Masek JG, Duncan CC (1998) Minimum-work mountain building. J Geophys Res 103(B1):907–918

    Google Scholar 

  • Melnick D, Echtler HP (2006) Inversion of forearc basins in south-central Chile caused by rapid glacial age trench fill. Geology, Sep. 2006 issue

    Google Scholar 

  • Miller SA, Nur A, Olgaard DL (1996) Earthquakes as a coupled shear stress-high pore pressure dynamical system. Geophys Res Lett 23:197–200

    Google Scholar 

  • Moore JC, Biju-Duval B (1984) Tectonic synthesis, Deep Sea Drilling Program Leg 78A: Structural evolution of offscraped and under-thrust sediment, northern Barbados ridge complex. Deep Sea Drilling Program Initial Reports 78:601–621

    Google Scholar 

  • Moore GF, Shipley TH, Lonsdale PT (1980) Subduction erosion versus sediment offscraping at the toe of the Middle America trench off Guatemala. Tectonics 5:513–531

    Google Scholar 

  • Mordojovich C (1981) Sedimentary basins of Chilean Pacific offshore. In: Halbouty MT (ed) Energy resources of the Pacific region. AAPG Studies in Geology 12:63–82

    Google Scholar 

  • Mourgues R, Cobbold PR (2006) Thrust wedges and fluid overpressures: sandbox models involving pore fluid, J Geophys Res 111: doi 10.1029/2004JB003441

    Google Scholar 

  • Norabuena EO, Leffler-Griffin L, Mao A, Dixon T, Stein S, Sacks IS, Ocola L, Ellis M (1998) Space geodetic observations of Nazca-south America convergence across the Central Andes. Science 279:358–396

    Google Scholar 

  • Norabuena EO, Dixon TH, Stein S, Harrison CGA (1999) Decelerating Nazca-South America and Nazca-Pacific plate motion. Geophys Res Lett 26(22):3405–3408

    Google Scholar 

  • Oncken O, Hindle D, Kley J, Elger K, Victor P, Schemmann K (2006) Deformation of the central Andean upper plate system — facts, fiction, and constraints for plateau models. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 3–28, this volume

    Google Scholar 

  • Ortlieb L, Ghaleb B, Hillaire-Marcel C, Goy JL, Machare J, Zazo C, Thiele R (1995) Quaternary vertical deformation along the southern Peru — northern Chile coast: marine terrace data. XIV INQUA Congress Berlin 1995, Terra Nostra 2(95):205

    Google Scholar 

  • Ortlieb L, Zazo C, Goy JL, Hillaire-Marcel C, Ghaleb B, Cournoyer L (1996a) Coastal deformation and sea-level changes in the northern Chile subduction area (23°S) during the last 330 ky. Quat Sci Rev 15:819–831

    Google Scholar 

  • Ortlieb L, Zazo C, Goy JL, Dabrio C, Macharé J (1996b) Pampa del Palo: an anomalous composite marine terrace on the uprising coast of southern Peru. J S Am Earth Sci 9:367–379

    Google Scholar 

  • Ota Y, Paskoff R (1993) Holcene deposits on the coast of north-central Chile: Radiocarbon ages and implications for coastal changes. Rev Géologica de Chile 20:25–32

    Google Scholar 

  • Ota Y, Miyauchi T, Paskoff R, Koba M (1995) Plio-Quaternary marine terraces and their deformation along the Altos de Talinay, north-Central Chile. Rev Géologica de Chile 22:89–102

    Google Scholar 

  • Patzwahl R, Mechie J, Schulze A, Giese P (1999) Two-dimensional velocity models of the Nazca plate subduction zone between 19.5°S and 25°S from wide-angle seismic measurements during the CINCA95 project. J Geophys Res 104:7293–7317

    Google Scholar 

  • Pelz K (2000) Tektonische Erosion am zentralandinen Forearc (20°–24°S). GDZ Scientif Technical Report STR 00/20

    Google Scholar 

  • Rabassa J, Clapperton CM (1990) Quaternary glaciations of the southern Andes. Quat Sci Rev 9:153–174

    Google Scholar 

  • Ranero CR, von Huene R (2000) Subduction erosion along the Middle America convergent margin. Nature 404:748–752

    Google Scholar 

  • Rauch K (2005) Cyclicity of Peru-Chile trench sediments between 36°S and 38°S: a footprint of paleoclimatic variations? Geophys Res Lett 32: doi 10.1029/2004GL022196

    Google Scholar 

  • Resig J (1990) Benthic foraminiferal stratigraphy and paleoenvironments off Peru, Leg 112. Proceedings of the Ocean Drilling Program, Scientific Results 112:263–296

    Google Scholar 

  • Reymer A, Schubert G (1984) Phanerozoic addition rates to the continental crust and crustal growth. Tectonics 3:63–77

    Google Scholar 

  • Le Roux JP, Tavares Correa C, Alayza F (2000) Sedimentology of the Rímac-Chillón alluvial fan at Lima, Peru, as related to Plio-Pleistocene sea-level changes, glacial cycles and tectonics. J S Am Earth Sci 13:499–510

    Google Scholar 

  • Le Roux JP, Gómez C, Venegas C, Fenner J, Middleton H, Marchant M, Buchbinder A, Frassinetti D, Marquardt C, Gregory-Wodzicki KM, Lavenu A (2005) Neogene-Quaternary coastal and offshore sedimentation in north central Chile: record of sea-level changes and implications for Andean tectonism. J S Am Earth Sci 19:83–98

    Google Scholar 

  • Rötzler K, Naumann R, Wilke H-G (1998) Tectonic erosion of terrigenous rocks in northern Chile (19°S and 24° S) In: Hinz K (ed) Crustal investigations off-and onshore Nazca/Central Andes (CINCA). Rep BGR 117.613

    Google Scholar 

  • Rutland RWR (1971) Andean orogeny and ocean floor spreading. Nature 233:252–255

    Google Scholar 

  • Sallares V, Ranero CR (2005) Structure and tectonics of the erosional convergent margin off Antofagasta, north Chile (23°30′ S). J Geophys Res 110: doi 10.1029/2004JB003418

    Google Scholar 

  • Scheuber E, Bogdanic T, Jensen A, Reutter K-J (1994) Tectonic development of the north Chilean Andes in relation to plate convergence and magmatism since the Jurassic. In: Reutter K-J, Scheuber E, Wigger PJ (eds) Tectonics of the Southern Central Andes. Structure and evolution of an active continental margin. Springer-Verlag, Berlin Heidelberg New York, pp 121–139

    Google Scholar 

  • Scholl DW, Christensen MN, von Huene R, Marlow MS (1970) Peru-Chile trench sediments and sea-floor spreading. Geol Soc Am Bull 81:1339–1360

    Google Scholar 

  • Seifert W, Rosenau M, Echtler H (2005) Crystallization depths of granitoids of South Central Chile estimated by AL-in-hornblende geobarometry: implications for mass transfer processes along the active continental margin. N Jb Geol Paläont 236:115–127

    Google Scholar 

  • Sibson RH (1992) Implications of fault valve behaviour for rupture nucleation and recurrence. Tectonophysics 211:283–293

    Google Scholar 

  • Sick C, Yoon M-K, Rauch K, Buske S, Lüth S, Araneda M, Bataille K, Chong G, Giese P, Krawczyk C, Mechie J, Meyer H, Oncken O, Reichert C, Schmitz M, Shapiro S, Stiller M, Wigger P (2006) Seismic images of accretive and erosive subduction zones from the Chilean margin. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 147–170, this volume

    Google Scholar 

  • Somoza R (1998) Updated Nazca (Farallon)-South America relative motions during the last 40 Myr: implications for mountain building in the central Andean region. J S Am Earth Sci 11:211–215

    Google Scholar 

  • Sosson M, Bourgois J, Mercier de Lépinay B (1994) SeaBeam and deep-sea submersible Nautile surveys in the Chiclayo canyon off Peru (7°S): subsidence and subduction-erosion of an Andean-type convergent margin since Pliocene times. Mar Geol 118:237–256

    Google Scholar 

  • Stern CR (1989) Pliocene to present migration of the volcanic front, Andean southern volcanic zone. Rev Geol Chile 16:145–162

    Google Scholar 

  • Stern CR (1991) Role of subduction erosion in the generation of Andean magmas. Geology 19:78–81

    Google Scholar 

  • Suess E, von Huene R (1988) Proceedings of the Ocean Drilling Program, Initial Reports 112. College Station TX

    Google Scholar 

  • Thomson SN (2002) Late Cenozoic geomorphic and tectonic evolution of the Patagonian Andes between latitudes 42°S and 46°S: An appraisal based on fission-track results from the transpressional intra-arc Liquiñe-Ofqui fault zone. Geol Soc Am Bull 114:1159–1173

    Google Scholar 

  • Trumbull RB, Riller U, Oncken O, Scheuber E, Munier K, Hongn F (2006) The time-space distribution of Cenozoic volcanism in the South-Central Andes: a new data compilation and some tectonic implications. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 29–44, this volume

    Google Scholar 

  • Vannucchi P, Scholl DW, Meschede M, McDougall-Reid K (2001) Tectonic erosion and consequent collapse of the Pacific margin of Costa Rica: combined implications from ODP Leg 170, seismic offshore data, and regional geology of the Nicoya Peninsula. Tectonics 20(5):649–668

    Google Scholar 

  • Vannucchi P, Galeotti S, Clift PD, Ranero CR, von Huene R (2004) Long-term subduction-erosion along the Guatemalan margin of the Middle America Trench. Geology 32:617–620

    Google Scholar 

  • Victor P, Oncken O, Glodny J (2004) Uplift of the western Altiplano plateau: evidence from the Precordillera between 20° and 21°s (northern Chile). Tectonics 23: doi 10.1029/2003TC001519

    Google Scholar 

  • Vietor T, Echtler H (2006) Episodic Neogene southward growth of the Andean subduction orogen between 30° S and 40° S — plate motions, mantle flow, climate, and upper-plate structure. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 375–400, this volume

    Google Scholar 

  • Völker D, Wiedicke M, Ladage S, Gaedicke C, Reichert C, Rauch K, Kramer W, Heubeck C (2006) Latitudinal variation in sedimentary processes in the Peru-Chile trench off Central Chile. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 193–216, this volume

    Google Scholar 

  • von Huene R, Culotta R (1989) Tectonic erosion at the front of the Japan trench convergent margin. Tectonophysics 160:70–90

    Google Scholar 

  • von Huene R, Lallemand S (1990) Tectonic erosion along the Japan and Peru convergent margins. Geol Soc Am Bull 102: 704–720

    Google Scholar 

  • von Huene R, Ranero CR (2003) Subduction erosion and basal friction along the sediment-starved convergent margin off Antofagasta. J Geophys Res 108(B2): doi 10.1029/2001JB001569

    Google Scholar 

  • von Huene R, Scholl DW (1991) Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev Geophys 29:279–316

    Google Scholar 

  • von Huene R, Weinrebe W, Heeren F (1999) Subduction erosion along the north Chile margin. J Geodynamics 27:345–358

    Google Scholar 

  • von Huene R, Ranero CR, Vannucchi P (2004) Generic model of subduction erosion. Geology 32:913–916

    Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of the Generic Mapping Tools released. EOS 79(47):579

    Google Scholar 

  • Willner A, Glodny J, Gerya TV, Gogoy E, Massone H-J (2004) A counter-clockwise pTt-path of high pressure-low temperature rocks from the coastal Cordillera accretionary complex of south Central Chile: constraints for the earliest stage of subduction mass flow. Lithos 75:283–310

    Google Scholar 

  • Yañez G, Ranero C, von Huene R, Diaz J (2001) Manetic anomaly interpretation across the southern-central Andes (32°–34°S): the role of the Juan Fernandez ridge in the late Tertiary evolution of the margin. J Geophys Res 106:6325–6345

    Google Scholar 

  • Zachos J, Pagani H, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Google Scholar 

  • Zazo C, Ortlieb L, Goy JL, Macharé J (1994) Fault tectonics and crustal vertical motions on the coastal area of southern Peru. Bull INQUA Neotectonics Commission 17:31–33

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kukowski, N., Oncken, O. (2006). Subduction Erosion — the “Normal” Mode of Fore-Arc Material Transfer along the Chilean Margin?. In: Oncken, O., et al. The Andes. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-48684-8_10

Download citation

Publish with us

Policies and ethics