Skip to main content

Deformation of the Central Andean Upper Plate System — Facts, Fiction, and Constraints for Plateau Models

  • Chapter
The Andes

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

We quantitatively analyse the spatial pattern of deformation partitioning and of temporal accumulation of deformation in the Central Andes (15–26° S) with the aim of identifying those mechanisms responsible for initiating and controlling Cenozoic plateau evolution in this region. Our results show that the differential velocity between upper plate velocity and oceanic plate slab rollback velocity is crucial for determining the amount and rate of shortening, as well as their lateral variability at the leading edge of the upper plate. This primary control is modulated by factors affecting the strength balance between the upper plate lithosphere and the Nazca/South American Plate interface. These factors particularly include a stage of reduced slab dip (33 to 20 Ma) that accelerated shortening and an earlier phase (45 to 33 Ma) of higher trenchward sediment flux that reduced coupling at the plate interface, resulting in slowed shortening and enhanced slab rollback. Because high sediment flux and transfer of convergence into upper plate shortening constitute a negative feedback, we suggest that interruption of this feedback is critical for sustaining high shortening transfer, as observed for the Andes. Although we show that climate trends have no influence on the evolution of the Central Andes, the position of this region in the global arid belt in a low erosion regime is the key that provides this interruption; it inhibits high sediment flux into the trench despite the formation of relief from ongoing shortening. Along-strike variations in Andean shortening are clearly related to changes of the above factors. The spatial pattern of distribution of deformation in the Central Andes, as well as the synchronization of fault systems and the total magnitude of shortening, was mainly controlled by large-scale, inherited upper plate features that constitute zones of weakness in the upper plate leading edge. In summary, only a very particular combination of parameters appears to be able to trigger plateau-style deformation at a convergent continental margin. The combination of these parameters (in particular, differential trench-upper plate velocity evolution, high plate interface coupling from low trench infill, and the lateral distribution of weak zones in the upper plate leading edge) was highly uncommon during the Phanerozoic. This led to very few plateau-style orogens at convergent margins like the Cenozoic Central Andes in South America or, possibly, the Laramide North American Cordillera.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allmendinger RW (1986) Tectonic development, southeastern border of the Puna Plateau, northwestern Argentine Andes. Geol Soc Amer Bull 97:1070–1082

    Article  Google Scholar 

  • Allmendinger RW, Gubbels T (1996) Pure and simple shear plateau uplift, Altiplano-Puna, Argentina and Bolivia. Tectonophysics 259(1–3):1–13

    Article  Google Scholar 

  • Allmendinger RW, Zapata TR (2000) The footwall ramp of the Subandean decollement, northernmost Argentina, from extended correlation of seismic reflection data. Tectonophysics 321(1):37–55

    Article  Google Scholar 

  • Allmendinger RW, Ramos VA, Jordan TE, Palma M, Isacks BL (1983) Paleogeography and Andean structural geometry, Northwest Argentina. Tectonics 2:1–16

    Google Scholar 

  • Allmendinger RW, Jordan TE, Kay SM, Isacks BL (1997) The evolution of the Altiplano-Puna Plateau of the Central Andes. Ann Rev Earth Planet Sci 25:139–174

    Article  Google Scholar 

  • Alpers CN, Brimhall GH (1988) Middle Miocene climatic change in the Atacama Desert, northern Chile: evidence from supergene mineralization at La Escondida. Geol Soc Amer Bull 100(10):1640–1656

    Article  Google Scholar 

  • ANCORP-Working Group (2003) Seismic imaging of an active continental margin — the Central Andes (ANCORP’ 96). J Geophys Res 108: doi 10.1029/2002JB001771

    Google Scholar 

  • Babeyko AY, Sobolev SV, Trumbull RB, Oncken O, Lavier LL (2002) Numerical models of crustal scale convection and partial melting beneath the Altiplano-Puna Plateau. Earth Planet Sci Lett 199(3–4):373–388

    Article  Google Scholar 

  • Baby P, Hérail G, Lopez JM, Oller J, Pareja J, Sempere T, Tufiño D (1989) Structure de la Zone subandine de Bolivie: influence de la géométrie des séries sédimentaires antéorogéniques sur la propagation de chevauchements. Comptes Rendus, Série 2, 309:1717–1722

    Google Scholar 

  • Baby P, Hérail G, Salinas R, Sempere T (1992) Geometry and kinematic evolution of passive roof duplexes deduced from cross section balancing: example from the foreland thrust system of the southern Bolivian Subandean zone. Tectonics 11(3):523–536

    Google Scholar 

  • Baby P, Guillier B, Oller J, Montemurro G (1993) Modèle cinématique de la Zone subandine du coude de Santa Cruz (entre 16° S et 19° S, Bolivie) déduit de la construction de cartes equilibrées. Comptes Rendus, Série 2, 317:1477–148

    Google Scholar 

  • Baby P, Moretti I, Guillier B, Limachi R, Mendez E, Oller J, Specht M (1995) Petroleum system of the northern and central Bolivian Sub-Andean Zone. In: Tankard AJ, Suárez RS, Welsink HJ (eds) Petroleum basins of South America. AAPG Mem, pp 445–458

    Google Scholar 

  • Baby P, Rochat P, Mascle G, Hérail G (1997) Neogene shortening contribution to crustal thickening in the back arc of the Central Andes. Geology 25(10):883–886

    Article  Google Scholar 

  • Beck SL, Zandt G (2002) The nature of orogenic crust in the central Andes. J Geophys Res 107: doi 10.1029/2000JB000124

    Google Scholar 

  • Benjamin MT, Johnson NM, Naeser CW (1987) Recent rapid uplift in the Bolivian Andes: evidence from fission-track dating. Geology 15(7):680–683

    Article  Google Scholar 

  • Bevis M, Kendrick E, Smalley R Jr, Brooks B, Allmendinger R, Isacks B (2001) On the strength of interplate coupling and the rate of back arc convergence in the central Andes: an analysis of the interseismic velocity field. Geochem Geophys Geosyst 2: doi 2001GC000198

    Google Scholar 

  • Carlotto V (1998) Evolution andine et raccourcissement au niveau de Cusco (13°–16° S, Pérou). PhD thesis, Université de Grenoble

    Google Scholar 

  • Carlotto V, Carlier G, Jaillard E, Sempere T, Mascle G (1999) Sedimentary and structural evolution of the Eocene-Oligocene Capas Rojas Basin: evidence for a late Eocene lithospheric delamination event in the southern Peruvian Altiplano. 4th ISAG, Göttingen, pp 141–145

    Google Scholar 

  • Charrier R, Baeza O, Elgueta S, Flynn JJ, Gans P, Kay SM, Muñoz N, Wyss AR, Zurita E (2002) Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, southern Central Andes, Chile (33°–36° S.L.). J S Amer Earth Sci 15(1):117–139

    Article  Google Scholar 

  • Cladouhos TT, Allmendinger RW, Coira B, Farrar E (1994) Late Cenozoic deformation in the central Andes: fault kinematics from the northern Puna, northwestern Argentina and southwestern Bolivia. J S Amer Earth Sci 7(2):209–228

    Article  Google Scholar 

  • Clift PD, Vannucchi P (2004) Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev Geophys 42: doi 10.1029/2003RG000127

    Google Scholar 

  • Clift PD, Pecher I, Kukowski N, Hampel A (2003) Tectonic erosion of the Peruvian forearc, Lima Basin, by subduction and Nazca Ridge collision. Tectonics 22(3):1023 doi 10.1029/2002TC001386

    Google Scholar 

  • Coney PJ, Evenchick CA (1994) Consolidation of the American cordilleras. J S Amer Earth Sci 7:241–262

    Article  Google Scholar 

  • Coutand I, Chauvin A, Cobbold PR, Gautier P, Roperch P (1999) Vertical axis rotations across the Puna Plateau (northwestern Argentina) from paleomagnetic analysis of Cretaceous and Cenozoic rocks. J Geophys Res 104(10):22965–22984

    Article  Google Scholar 

  • Coutand I, Gautier P, Cobbold P, De Urreiztieta M, Chauvin A, Gapais D, Rossello E, Lopez-Gammundi O (2001) Style and history of Andean deformation, Puna Plateau, northwestern Argentina. Tectonics 20:210–234

    Article  Google Scholar 

  • Cristallini E, Cominguez AH, Ramos VA (1997) Deep structure of the Metan-Guachipas region: tectonic inversion in northwestern Argentina. J S Amer Earth Sci 10(5–6):403–421

    Article  Google Scholar 

  • Dalmayrac B, Molnar P (1981) Parallel thrust and normal faulting in Peru and constraints on the state of stress. Earth Planet Sci Lett 55(3):473–481

    Article  Google Scholar 

  • De Urreiztieta M, Gapais D, Le CC, Cobbold PR, Rossello E (1996) Cenozoic dextral transpression and basin development at the southern edge of the Puna Plateau, northwestern Argentina. Tectonophysics 254(1–2):17–39

    Article  Google Scholar 

  • DeCelles PG, Horton BK (2003) Early to middle Tertiary foreland basin development and the history of Andean crustal shortening in Bolivia. Geol Soc Amer Bull 115(1):58–77

    Article  Google Scholar 

  • Dunn JF, Hartshorn KG, Hartshorn PW (1995) Structural styles and hydrocarbon potential of the Subandean thrust belt of southern Bolivia. In: Tankard AJ, Suárez RS, Welsink HJ (eds) Petroleum basins of South America. AAPG Mem 62:523–543

    Google Scholar 

  • Echavarria L, Hernandez R, Allmendinger R, Reynolds J (2003) Subandean thrust and fold belt of northwestern Argentina: geometry and timing of the Andean evolution. AAPG Bull 87(6):965–985

    Article  Google Scholar 

  • Ege H (2004) Exhumations-und Hebungsgeschichte der zentralen Anden in Südbolivien (21° S) durch Spaltspur-Thermochronologie an Apatit. PhD thesis, Freie Universität Berlin, http://www.diss.fu-berlin.de/2004/64/index.html

    Google Scholar 

  • Elger K, Oncken O, Glodny J (2005) Plateau-style accumulation of deformation — the Southern Altiplano. Tectonics 24: doi 10.1029/2004TC001675

    Google Scholar 

  • Engdahl ER, Van der Hilst RD, Buland RP (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull Seismo Soc Amer 88(3):722–743

    Google Scholar 

  • Farías M, Charrier R, Comte D, Martinod J, Hérail G (2005). Late Cenozoic uplift of the western flank of the Altiplano: evidence from the depositional, tectonic, and geomorphologic evolution and shallow seismic activity (northern Chile at 19°30′ S). Tectonics 24(4): doi 10.1029/2004TC001667

    Google Scholar 

  • Garzione CN, Molnar P, Libarkin JC, MacFadden BJ (2006) Rapid late Miocene rise of the Bolivian Altiplano: evidence for removal of mantle lithosphere. EPSL 241, doi 10.1016/j.epsl.2005.11.026

    Google Scholar 

  • Gaupp R, Kött A, Wörner G (1999) Palaeoclimatic implications of Mio-Pliocene sedimentation in the high-altitude intra-arc Lauca Basin of northern Chile. Palaeogeogr Palaeoclimat Palaeoecol 151:79–100

    Article  Google Scholar 

  • Gephart JW (1994) Topography and subduction geometry in the Central Andes: clues to the mechanics of a noncollisional orogen. J Geophys Res 99(6):12279–12288

    Article  Google Scholar 

  • Ghosh P, Garzione CN, Eiler JM (2006) Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates. Science 311: doi 10.1126/science.1119365

    Google Scholar 

  • Gil W, Baby P, Marocco R, Ballard JF (1999) North-south structural evolution of the Peruvian Subandean Zone. 5th ISAG, pp 278–282

    Google Scholar 

  • Giese P, Scheuber E, Schilling F, Schmitz M, Wigger P (1999) Crustal thickening processes in the Central Andes and the different natures of the Moho-discontinuity. J S Amer Earth Sci 12:201–220

    Article  Google Scholar 

  • González E (1989) Hydrocarbon resources in the coastal zone of Chile. In: Ericksen GE, Cañas Pinochet MT, Reinemund JA (eds) Geology of the Andes and its relation to hydrocarbon and mineral resources. Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, Houston, Texas, pp 383–404

    Google Scholar 

  • Grier ME, Salfity JA, Allmendinger RW (1991) Andean reactivation of the Cretaceous Salta Rift, northwestern Argentina. J S Amer Earth Sci 4(4):351–372

    Article  Google Scholar 

  • Gubbels TL, Isacks BL, Farrar E (1993) High-level surfaces, plateau uplift, and foreland development, Bolivian Central Andes. Geology 21:695–698

    Article  Google Scholar 

  • Gutscher MA, Maury R, Eissen JP, Bourdon E (2000a) Can slab melting be caused by flat subduction? Geology 28(6):535–538

    Article  Google Scholar 

  • Gutscher MA, Spakman W, Bijwaard H, Engdahl ER (2000b) Geodynamics of flat subduction: seismicity and tomographic constraints from the Andean margin. Tectonics 19(5):814–833

    Article  Google Scholar 

  • Hartley AJ, Chong G (2002) Late Pliocene age for Atacama Desert: implications for the desertification of western South America. Geol Soc Amer Bull 30(1):43–46

    Google Scholar 

  • Hartley AJ, May G, Chong G, Turner P, Kape SJ, Jolley EJ (2000) Development of a continental forearc: a Cenozoic example from the Central Andes, northern Chile. Geology 28(4):331–334

    Article  Google Scholar 

  • Haschke M, Guenther A (2003) Balancing crustal thickening in arcs by tectonic vs. magmatic means. Geology 31(11):933–936

    Article  Google Scholar 

  • Hassani R, Jongmans D, Chéry J (1997) Study of plate deformation and stress in subduction processes using two-dimensional numerical models. J Geophys Res 102:17951–17965

    Article  Google Scholar 

  • Heuret A, Lallemand S (2005) Plate motions, slab dynamics and back-arc deformation. Phys Earth Planet Interior 149:31–51

    Article  Google Scholar 

  • Hérail G, Baby P, López M, Oller J, López O, Salinas R, Sempéré T, Beccar G, Toledo H (1990) Structure and kinematic evolution of Subandean thrust system, Bolivia. ISAG, Grenoble, pp 179–182.

    Google Scholar 

  • Hérail G, Rochat P, Baby P, Aranibar O, Lavenue A, Mascle G (1993) El Altiplano Norte de Bolivia: Evolucion Geologica Terciaria. Actas del II Simposio de Estudios Altiplánicos, 19–21 Octubre 1993, Santiago de Chile, pp 33–44

    Google Scholar 

  • Hindle D, Kley J, Klosko E, Stein S, Dixon T, Norabuena E (2002) Consistency of geologic and geodetic displacements during Andean orogenesis. Geophys Res Lett 29(8): doi 10.1029/2001GL013757

    Google Scholar 

  • Hindle D, Kley J, Oncken O, Sobolev SV (2005) Crustal flux and crustal balance from shortening in the Central Andes. Earth Planet Sci Lett 230:113–124

    Article  Google Scholar 

  • Horton BK (1999) Erosional control on the geometry and kinematics of thrust belt development in the Central Andes. Tectonics 18(6):1292–1304

    Article  Google Scholar 

  • Horton BK (2005) Revised deformation history of the central Andes: inferences from Cenozoic foredeep and intramontane basins of the Eastern Cordillera, Bolivia. Tectonics 24: doi 10.1029/2003TC001619

    Google Scholar 

  • Horton BK, Hampton BA, Waanders GL (2001) Paleogene synorogenic sedimentation in the Altiplano Plateau and implications for initial mountain building in the Central Andes. Geol Soc Amer Bull 113(11):1387–1400

    Article  Google Scholar 

  • Horton BK, Hampton BA, Lareau BN, Baldellon E (2002) Tertiary provenance history of the northern and central Altiplano (Central Andes, Bolivia): a detrital record of plateau-margin tectonics. J Sed Res 72(5):711–726

    Google Scholar 

  • Husson L, Sempere T (2003) Thickening the Altiplano crust by gravity-driven crustal channel flow. Geophys Res Lett 30(5): doi10.1029/2002GL016877

    Google Scholar 

  • Isacks BL (1988) Uplift of the Central Andean Plateau and bending of the Bolivian Orocline. J Geophys Res 93(B4):3211–3231

    Google Scholar 

  • Jacobshagen V, Müller J, Wemmer K, Ahrendt H, Manutsoglu E (2002) Hercynian deformation and metamorphism in the Cordillera Oriental of Southern Bolivia, Central Andes. Tectonophysics 345(1–4):119–130

    Article  Google Scholar 

  • Jordan TE, Allmendinger RW (1986) The Sierras Pampeanas of Argentina:a modern analogue of Rocky Mountain foreland deformation. Amer J Sci 286:737–764

    Article  Google Scholar 

  • Jordan TE, Alonso RN (1987) Cenozoic stratigraphy and basin tectonics of the Andes Mountains, 20°–28° South latitude. AAPG Bul 71:49–64

    Google Scholar 

  • Jordan TE, Allmendinger RW, Damati JF, Drake RE (1993) Chronology of motion in a complete thrust belt: the Precordillera, 30–31 degrees S, Andes Mountains. J Geol 101:135–156

    Article  Google Scholar 

  • Jordan TE, Burns WM, Veiga R, Pangaro F, Copeland P, Kelley S, Mpodozis C (2001) Extension and basin formation in the Southern Andes caused by increased convergence rate: a mid-Cenozoic trigger for the Andes. Tectonics 20(3):308–324

    Article  Google Scholar 

  • Kay RW, Kay SM (1993) Delamination and delamination magmatism. Tectonophysics 219:177–189

    Article  Google Scholar 

  • Kennan L, Lamb S, Rundle C (1995) K-Ar dates from the Altiplano and Cordillera Oriental of Bolivia: implications for Cenozoic stratigraphy and tectonics. J S Amer Earth Sci 8(2):163–186

    Article  Google Scholar 

  • Kley J (1996) Transition from basement-involved to thin-skinned thrusting in the Cordillera Oriental of southern Bolivia. Tectonics 15(4):763–775

    Article  Google Scholar 

  • Kley J (1999) Geologic and geometric constraints on a kinematic model of the Bolivian orocline. J S Amer Earth Sci 12(2): 221–235

    Article  Google Scholar 

  • Kley J, Monaldi CR (1998) Tectonic shortening and crustal thickness in the Central Andes: how good is the correlation? Geology 26(8):723–726

    Article  Google Scholar 

  • Kley J, Monaldi CR (1999) Estructura de las Sierras Subandinas y del Sistema de Santa Bárbara. In: González BG, Omarini RH, Viramonte JG, Bossi GE, Coira B, Sureda RJ (eds) Geología del Noroeste Argentino, Tomo I. Relatorio-Congreso Geologica Argentino, Salta 14(1):415–425

    Google Scholar 

  • Kley J, Monaldi CR (2002) Tectonic inversion in the Santa Barbara system of the central Andean foreland thrust belt, northwestern Argentina. Tectonics 21(6): doi 10.1029/2002TC902003

    Google Scholar 

  • Klotz J, Khazaradze G, Angermann D, Reigber C, Perdomo R, Cifuentes O (2001) Earthquake cycle dominates contemporary crustal deformation in Central and Southern Andes. Earth Planet Sci Lett 93:437–446

    Article  Google Scholar 

  • Kober F, Schlunegger F, Ivy OS, Wieler R (2002) The dependency of cosmogenic nuclides to climate and surface uplift in transient landscapes, Abstracts 12th annual VM Goldschmidt conference. Pergamon Oxford International, p 408

    Google Scholar 

  • Kudrass HR, Von Rad U, Seyfried H, Andruleit H, Hinz K, Reichert C (1998) Age and facies of sediments of the northern Chilean continental slope — evidence for intense vertical movements. 03G0104A, BGR Hannover

    Google Scholar 

  • Kuhn D (2002) Fold-and-thrust belt structures and strike-slip faulting at the SE margin of the Salar de Atacama Basin, Chilean Andes. Tectonics 21(4): doi 10.1029/2001TC901042

    Google Scholar 

  • Kukowski N, Oncken O (2006) Subduction erosion at the Chile-Peru margin. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 217–236, this volume

    Google Scholar 

  • Lallemand SE, Schnuerle P, Malavieille J (1994) Coulomb theory applied to accretionary and nonaccretionary wedges: possible causes for tectonic erosion and/ or frontal accretion. J Geophys Res 99(6):12033–12055

    Article  Google Scholar 

  • Lamb S, Davis P (2003) Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425:792–797

    Article  Google Scholar 

  • Lamb S, Hoke L (1997) Origin of the high plateau in the Central Andes, Bolivia, South America. Tectonics 16(4):623–649

    Article  Google Scholar 

  • Mahlburg Kay S, Mpodozis C, Coira B (1999) Neogene magmatism, tectonism, and mineral deposits of the Central Andes (22° to 33° S Latitude). Soc Econom Geol Spec Publ 7:27–59

    Google Scholar 

  • Maksaev V, Zentilli M (1999) Fission track thermochronology of the Domeyko Cordillera, northern Chile: implications for Andean tectonics and porphyry copper metallogenesis, Latin American mineral deposits. Can Inst Mining Metall Petrol, Montreal, Canada, pp 65–89

    Google Scholar 

  • Mantovani E, Viti M, Babbucci D, Tamburelli C, Albarello D (2001) Back arc extension: which driving mechanism? In: Jessell MW (ed) General Contributions. J Virt Explor 3:17–45

    Google Scholar 

  • Marrett RA, Strecker MR (2000) Response of intracontinental deformation in the Central Andes to late Cenozoic reorganization of South American Plate motions. Tectonics 19(3):452–67

    Article  Google Scholar 

  • Marrett RA, Allmendinger RW, Alonso RN, Drake RE (1994) Late Cenozoic tectonic evolution of the Puna Plateau and adjacent foreland, northwestern Argentine Andes. J S Amer Earth Sci 7(2):179–207

    Article  Google Scholar 

  • Masek JG, Isacks BL, Gubbels TL, Fielding EJ (1994) Erosion and tectonics at the margins of continental plateaus. J Geophys Res 99(7):13941–13956

    Article  Google Scholar 

  • Mathalone JMP, Montoya M (1995) Petroleum Geology of the Sub-Andean Basins of Peru. In: Tankard AJ, Suárez SR, Welsink HJ (eds) Petroleum Basins of South America. AAPG Mem 62:423–444

    Google Scholar 

  • McNulty B, Farber D (2002) Active detachment faulting above the Peruvian flat slab. Geology 30(6):567–570

    Google Scholar 

  • McQuarrie N (2002) Initial plate geometry, shortening variations, and evolution of the Bolivian Orocline. Geology 30(10):867–870

    Article  Google Scholar 

  • McQuarrie N, DeCelles P (2001) Geometry and structural evolution of the Central Andean backthrust belt, Bolivia. Tectonics 20(5): 669–692

    Article  Google Scholar 

  • Mégard F (1984) The Andean orogenic period and its major structures in central and northern Peru. J Geol Soc Lond 141:893–900

    Google Scholar 

  • Mercier JL, Sébrier M, Lavenu A, Cabrera J, Bellier O, Dumont JF, Machare J (1992) Changes in the tectonic regime above a subduction zone of Andean type: the Andes of Peru and Bolivia during the Pliocene-Pleistocene. J Geophys Res 97(8):11945–11982

    Google Scholar 

  • Montgomery DR, Balco G, Willett SD (2001) Climate, tectonics, and the morphology of the Andes. Geology 29(7):579–582

    Article  Google Scholar 

  • Müller JP, Kley J, Jacobshagen V (2002) Structure and Cenozoic kinematics of the Eastern Cordillera, southern Bolivia (21° S). Tectonics 21(5): doi 10.1029/2001TC001340

    Google Scholar 

  • Muñoz N, Charrier R (1996) Uplift of the western border of the Altiplano on a westvergent thrust system, northern Chile. J S Amer Earth Sci 9(3—4):171–181

    Article  Google Scholar 

  • New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Climate Res 21:1–25

    Google Scholar 

  • Pankhurst RJ, Rapela CW, Saavedra J, Baldo E, Dahlquist J, Pascua I, Fanning CM (1998) The Famatinian magmatic arc in the central Sierras Pampeanas: an Early to Mid-Ordovician continental arc on the Gondwana margin. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean margin of Gondwana. Geol Soc Lond Spec Publ 142:343–367

    Google Scholar 

  • Pardo Casas F, Molnar P (1987) Relative motion of the Nazca (Farallon) and South American Plates since late Cretaceous time. Tectonics 6(3):233–248

    Google Scholar 

  • Pope DC, Willett SD (1998) Thermal-mechanical model for crustal thickening in the Central Andes driven by ablative subduction. Geology 26(6):511–514

    Article  Google Scholar 

  • Rapela CW, Pankhurst RJ, Casquet C, Baldo E, Saavedra J, Galindo C, Fanning CM (1998) The Pampean orogeny of the southern Proto-Andes: Cambrian continental collision in the Sierra de Córdoba. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean margin of Gondwana. Geol Soc Lond Spec Publ 142:181–217

    Google Scholar 

  • Reutter K-J, Scheuber E, Chong G (1996) The Precordilleran fault system of Chuquicamata, northern Chile: evidence for tectonic inversion along arc-parallel strike slip faults. Tectonophysics 259:213–228

    Article  Google Scholar 

  • Riller U, Oncken O (2003) Growth of the central Andean Plateau by tectonic segmentation is controlled by the gradient in crustal shortening. J Geol 111:367–384

    Article  Google Scholar 

  • Rochat P, Hérail G, Baby P, Mascle G (1999) Bilan crustal et contrôle de la dynamique érosive et sédimentaire sur les mécanismes de formation de l’Altiplano. Comptes Rendus, Série 2, 328(3):189–195

    Google Scholar 

  • Roeder D (1988) Andean-age structure of Eastern Cordillera (Province of La Paz, Bolivia). Tectonics 7(1):23–39

    Article  Google Scholar 

  • Roeder D, Chamberlain RL (1995) Structural Geology of Sub-Andean Fold and Thrust Belt in Northwestern Bolivia. In: Tankard AJ, Suárez RS, Welsink HJ (eds) Petroleum Basins of South America. AAPG Mem 62:459–479

    Google Scholar 

  • Russo RM, Silver PG (1996) Cordillera formation, mantle dynamics, and the Wilson cycle. Geology 24(6):511–514

    Article  Google Scholar 

  • Rutland RWR (1971) Andean orogeny and ocean floor spreading. Nature 233:252–255

    Article  Google Scholar 

  • Salfity JA, Marquillas RA (1994) Tectonic and sedimentary evolution of the Cretaceous-Eocene Salta Group basin, Argentina. In: Salfity JA (eds) Cretaceous tectonics of the Andes. Vieweg, Braunschweig, pp 266–315

    Google Scholar 

  • Scheuber E, Reutter KJ (1992) Magmatic arc tectonics in the Central Andes between 21 and 25° S. Tectonophysics 205:127–140

    Article  Google Scholar 

  • Scheuber E, Bogdanic T, Jensen A, Reutter KJ (1994) Tectonic development of the north Chilean Andes in relation to plate convergence and magmatism since the Jurassic. In: Reutter KJ, Scheuber E, Wigger PJ (eds) Tectonics of the southern Central Andes, structure and evolution of an active continental margin. Springer, Berlin Heidelberg New York, pp 121–139

    Google Scholar 

  • Schmidt CJ, Astini RA, Costa CH, Gardini CE, Kraemer PE (1995) Cretaceous Rifting, Alluvial Fan Sedimentation, and Neogene Inversion, Southern Sierras Pampeanas, Argentina. In: Tankard AJ, Suárez SR, Welsink HJ (eds) Petroleum Basins of South America. AAPG Mem 62:341–358

    Google Scholar 

  • Sempere T, Hérail G, Oller J, Bonhomme MG (1990) Late Oligocene-Early Miocene major tectonic crisis and related basins in Bolivia. Geology 18(10):946–949

    Article  Google Scholar 

  • Sempere T, Carlier G, Soler P, Fornari M, Carlotto V, Jacay J, Arispe O, Neraudeau D, Cardenas J, Rosas S, Jimenez N (2002) Late Permian-Middle Jurassic lithospheric thinning in Peru and Bolivia, and its bearing on Andean-age tectonics. Tectonophysics 345: 153–181

    Article  Google Scholar 

  • Sheffels BM (1990) Lower bound on the amount of crustal shortening in the central Bolivian Andes. Geology 18:812–815

    Article  Google Scholar 

  • Sheffels BM (1995) Is the bend in the Bolivian Andes an orocline? Petroleum basins of South America. In: Tankard AJ, Soruco RS, Welsink HJ (eds) Petroleum basins of South America. AAPG Mem 62:511–522

    Google Scholar 

  • Silva González P (2004) Der südliche Altiplano im Tertiär: Sedimentäre Entwicklung und tektonische Implikationen. PhD thesis, Freie Universität Berlin, http://www.diss.fuberlin.de/2004/125/index.html

    Google Scholar 

  • Silver PG, Russo RM, Lithgow BC (1998) Coupling of South American and African Plate motion and plate deformation. Science 279:60–63

    Article  Google Scholar 

  • Sobel ER, Hilley GE, Strecker MR (2003) Formation of internally drained contractional basins by aridity-limited bedrock incision. J Geophys Res 108(7): doi 10.1029/2002JB001883

    Google Scholar 

  • Sobolev SV, Babeyko AY, Koulakov I, Oncken O, Vietor T (2006) Mechanism of the Andean orogeny: insight from the numerical modeling. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 513–536, this volume

    Google Scholar 

  • Somoza R (1998) Updated Nazca (Farallon)-South America relative motions during the last 40 My: Implications for mountain building in the central Andean region. J S Amer Earth Sci 11(3):211–215

    Article  Google Scholar 

  • Springer M, Förster A (1998) Heat flow density across the Central Andean subduction zone. Tectonophysics 291:123–139

    Article  Google Scholar 

  • Tassara A, Götze HJ, Schmidt S, Hackney R (2006) Three-dimensional density model of the Nazca Plate and Andean continental margin. Submitted to J Geophys Res

    Google Scholar 

  • Trumbull RB, Riller U, Oncken O, Scheuber E, Munier, K, Hongn F (2006) The time-space distribution of Cenozoic arc volcanism in the South-Central Andes: a new data compilation and some tectonic implications. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 29–44, this volume

    Google Scholar 

  • Victor P, Oncken O, Glodny J (2004) Uplift of the western Altiplano Plateau: evidence from the Precordillera between 20 degrees S and 21 degrees S: northern Chile. Tectonics 23: doi 10.1029/2003TC001519

    Google Scholar 

  • Vietor T, Echtler H (2006) Episodic Neogene southward growth of the Andean subduction orogen between 30° S and 40° S — plate motions, mantle flow, climate, and upper-plate structure. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 375–400, this volume

    Google Scholar 

  • Viramonte J, Kay SM, Becchio R, Escayola M, Novitski I (1999) Cretaceous rift related magamatism in central-western South America. J S Amer Earth Sci 12(2):109–121

    Article  Google Scholar 

  • von Huene R, Ranero CR (2003) Subduction erosion and basal friction along the sediment-starved convergent margin off Antofagasta, Chile. J Geophys Res 108(2): doi 10.1029/2001JB001569

    Google Scholar 

  • Wdowinski S, Bock Y (1994) The evolution of deformation and topography of high elevated plateaus. 2. Application to the Central Andes. J Geophys Res 99(4):7121–7130

    Article  Google Scholar 

  • Whitman D (1994) Moho geometry beneath the eastern margin of the Andes, northwest Argentina, and its implications to the effective elastic thickness of the Andean foreland. J Geophys Res 99(8):15227–15289

    Article  Google Scholar 

  • Yañez GA, Ranero CR, von Huene R, Diaz J (2001) Magnetic anomaly interpretation across the southern Central Andes (32°–34° S): the role of the Juan Fernandez Ridge in the late Tertiary evolution of the margin. J Geophys Res 106(4):6325–6345

    Article  Google Scholar 

  • Yuan X, Sobolev SV, Kind R, Oncken O, Bock G, Asch G, Schurr B, Graeber F, Rudloff A, Hanka W, Wylegalla K, Tibi R, Haberland C, Rietbrock A, Giese P, Wigger, P, Roewer P, Zandt G, Beck S, Wallace T, Pardo M, Comte D (2000) Subduction and collision processes in the Central Andes constrained by converted seismic phases. Nature 408:958–961

    Article  Google Scholar 

  • Yuan X, Sobolev SV, Kind R (2002) Moho topography in the Central Andes and its geodynamic implications. Earth Planet Sci Lett 199(3–4):389–402

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292(5517):686–693

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oncken, O., Hindle, D., Kley, J., Elger, K., Victor, P., Schemmann, K. (2006). Deformation of the Central Andean Upper Plate System — Facts, Fiction, and Constraints for Plateau Models. In: Oncken, O., et al. The Andes. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-48684-8_1

Download citation

Publish with us

Policies and ethics