Skip to main content

The Prefrontal Cortex: Categories, Concepts, and Cognitive Control

  • Chapter
Memories: Molecules and Circuits

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

Abstract

What controls your thoughts? How do you know how to act while dining in a restaurant? This is cognitive control, the ability to organize thought and action around goals. Results from our laboratory have shown that neurons in the prefrontal cortex and related brain areas have properties commensurate with a role in “executive” brain function. Perhaps most importantly, they transmit acquired know ledge. Here, I discuss how the prefrontal cortex and basal ganglia may help obtain our internal representations of rules and principles needed for goal-directed behavior, thereby providing the foundation for the complex behavior of primates, in whom the prefrontal cortex is most elaborate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  PubMed  CAS  Google Scholar 

  • Arnsten AFT, Robbins TW (2002) Neurochemical modulation of prefrontal cortical function. In: Stuss DT, Knight RT (eds) Principles of frontal lobe function. New York: Oxford University Press, pp 51–84

    Google Scholar 

  • Asaad WF, Rainer G, Miller EK (1998) Task-related topography of neural activity in the primate prefrontal (PF) cortex. Soc Neurosci Abs 24:1425

    Google Scholar 

  • Asaad WF, Rainer G, Miller EK (2000) Task-specific activity in the primate prefrontal cortex. J Neurophysiol 84:451–459

    PubMed  CAS  Google Scholar 

  • Baddeley A, Della Sala S (1996) Working memory and executive control. Phil Trans Roy Soc London B: Biol Sci 351:1397–1403

    Article  CAS  Google Scholar 

  • Baker CI, Behrmann M, Olson CR (2002) Impact of learning on representation of parts and wholes in monkey inferotemporal cortex. Nature Neurosci 5:1210–1216

    Article  PubMed  CAS  Google Scholar 

  • Barbas H, Pandya D (1991) Patterns of connections of the prefrontal cortex in the rhesus monkey associated with cortical architecture. In: Levin HS, Eisenberg HM, Benton AL (eds) Frontal lobe function and dysfunction. New York: Oxford Univ. Press, pp 35–58

    Google Scholar 

  • Bar-Gad I, Morris G, Bergman H (2003) Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Prog Neurobiol 71:439–473

    Article  PubMed  Google Scholar 

  • Beale JM, Keil FC (1995) Categorical effects in the perception of faces. Cognition 57:217–239

    Article  PubMed  CAS  Google Scholar 

  • Beymer D, Poggio T (1996) Image representations for visual learning. Science 272:1905–1909

    Article  PubMed  CAS  Google Scholar 

  • Brannon EM, Terrace HS (1998) Ordering of the numerosities 1 to 9 by monkeys. Science 282:746–749

    Article  PubMed  CAS  Google Scholar 

  • Brannon EM, Wusthoff CJ, Gallistel CR, Gibbon J (2001) Numerical subtraction in the pigeon: evidence for a linear subjective number scale. Psychol Sci 12:238–243

    Article  PubMed  CAS  Google Scholar 

  • Brown JW, Bullock D, Grossberg S (2004) How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades. Neural Network 17:471–510

    Article  Google Scholar 

  • Bunge SA, Kahn I, Wallis JD, Miller EK, Wagner AD (2003) Neural circuits subserving the retrieval and maintenance of abstract rules. J Neurophysiol 90:3419–3428

    Article  PubMed  Google Scholar 

  • Dehaene S, Changeux JP (1993) Development of elementary numerical abilities: A neural model. J Cogn Neurosci 5:390–407

    Google Scholar 

  • Dehaene S, Spelke E, Pinel P, Stanescu R, Tsivkin S (1999) Sources of mathematical thinking: behavioral and brain-imaging evidence. Science 284:970–974

    Article  PubMed  CAS  Google Scholar 

  • Desimone R, Albright TD, Gross CG, Bruce C (1984) Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci 4:2051–2062

    PubMed  CAS  Google Scholar 

  • Duncan J, Emslie H, Williams P, Johnson R, Freer C (1996) Intelligence and the frontal lobe: The organization of goal-directed behavior. Cogn Psychol 30:257–303

    Article  CAS  Google Scholar 

  • Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392:598–601

    Article  PubMed  CAS  Google Scholar 

  • Fabre-Thorpe M, Richard G, Thorpe SJ (1998) Rapid categorization of natural images by rhesus monkeys. Neuroreport 9:303–308

    Article  PubMed  CAS  Google Scholar 

  • Flaherty AW, Graybiel AM (1991) Corticostriatal transformations in the primate somatosensory system. Projections from physiologically mapped body-part representations. J Neurophysiol 66:1249–1263

    PubMed  CAS  Google Scholar 

  • Freedman DJ, Riesenhuber M, Poggio T, Miller EK (2001) Categorical representation of visual stimuli in the primate prefrontal cortex. Science 291:312–316

    Article  PubMed  CAS  Google Scholar 

  • Freedman DJ, Riesenhuber M, Poggio T, Miller EK (2002) Visual categorization and the primate prefrontal cortex: Neurophysiology and behavior. J Neurophysiol 88:914–928

    Google Scholar 

  • Fuster JM (1995) Memory in the cerebral cortex. Cambridge, MA: MIT Press

    Google Scholar 

  • Fuster JM (2000) Executive frontal functions. Exp Brain Res 133:66–70

    Article  PubMed  CAS  Google Scholar 

  • Fuster JM, Bodner M, Kroger JK (2000) Cross-modal and cross-temporal association in neurons of frontal cortex. Nature 405:347–351

    Article  PubMed  CAS  Google Scholar 

  • Gainotti G (2000) What the locus of brain lesion tells us about the nature of the cognitive defect underlying category-specific disorders: a review. Cortex 36:539–559

    PubMed  CAS  Google Scholar 

  • Graybiel AM (1998) The basal ganglia and chunking of action repertoires. Neurobiol Learn Mem 70:119–136

    Article  PubMed  CAS  Google Scholar 

  • Gross CG (1973) Visual functions of inferotemporal cortex. In: Jung R (ed) Handbook of sensory physiology. Berlin: Springer-Verlag 7:451–482

    Google Scholar 

  • Hauser MC, S; Hauser, LB (2000) Spontaneous number representation in semi-free-ranging rhesus monkeys. Proc R Soc Lond B Biol Sci 267:829–833

    Article  CAS  Google Scholar 

  • Hauser MD, Dehaene S, Dehaene-Lambertz G, Patalano AL (2002) Spontaneous number discrimination of multi-format auditory stimuli in cotton-top tamarins (Saguinus oedipus). Cognition 86:B23–32

    Article  PubMed  Google Scholar 

  • Hoover JE, Strick PL (1993) Multiple output channels in the basal ganglia. Science 259:819–821

    Article  PubMed  CAS  Google Scholar 

  • Hoshi E, Shima K, Tanji J (1998) Task-dependent selectivity of movement-related neuronal activity in the primate prefrontal cortex. J Neurophysiol 80:3392–3397

    PubMed  CAS  Google Scholar 

  • Houk JC, Wise SP (1995) Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb Cortex 5:95–110

    Article  PubMed  CAS  Google Scholar 

  • Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: A module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311

    PubMed  CAS  Google Scholar 

  • Kelly RM, Strick PL (2004) Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits. Prog Brain Res 143:449–459

    PubMed  Google Scholar 

  • Kesner RP, Rogers J (2004) An analysis of independence and interactions of brain substrates that subserve multiple attributes, memory systems, and underlying processes. Neurobiol Learn Mem 82:199–215

    Article  PubMed  Google Scholar 

  • Kreiman G, Koch C, Fried I (2000) Category-specific visual responses of single neurons in the human medial temporal lobe. Nature Neurosci 3:946–953

    Article  PubMed  CAS  Google Scholar 

  • Logothetis NK, Sheinberg DL (1996) Visual object recognition. Ann Rev Neurosci 19:577–621

    Article  PubMed  CAS  Google Scholar 

  • McClure SM, Berns GS, Montague PR (2003) Temporal prediction errors in a passive learning task activate human striatum. Neuron 38:339–346

    Article  PubMed  CAS  Google Scholar 

  • Middleton FA, Strick PL (1994) Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 266:458–461

    Article  PubMed  CAS  Google Scholar 

  • Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev 31:236–250

    Article  PubMed  CAS  Google Scholar 

  • Middleton FA, Strick PL (2002) Basal-ganglia projections to the prefrontal cortex of the primate. Cereb Cortex 12:926–935

    Article  PubMed  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal function. Ann Rev Neurosci 24:167–202

    Article  PubMed  CAS  Google Scholar 

  • Mishkin M (1982) A memory system in the monkey. Philos Trans R Soc Lond B Biol Sci. 298:83–95

    PubMed  CAS  Google Scholar 

  • Muhammad R, Wallis JD, Miller EK (2006) A comparison of abstract rules in the prefrontal cortex, premotor cortex, the inferior temporal cortex and the striatum. J Cogn Neurosci, 6:974–989

    Article  Google Scholar 

  • Nauta WJH (1971) The problem of the frontal lobe: A reinterpretation. J Psychiatr Res 8:167–187

    Article  PubMed  CAS  Google Scholar 

  • Nieder A, Miller EK (2004) A parieto-frontal network for visual numerical information in the monkey. Proc Natl Acad Sci USA 101:7457–7462.

    Article  PubMed  CAS  Google Scholar 

  • Nieder A, Freedman DJ, Miller EK (2002) Representation of the quantity of visual items in the primate prefrontal cortex. Science 297:1708–1711

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly RC, Munakata Y, McClelland JL (2000) Computational explorations in cognitive neuroscience: understanding the mind. Cambridge: MIT Press

    Google Scholar 

  • O’Reilly RC, Frank MJ (2006) Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Comput 18:283–328

    Article  PubMed  Google Scholar 

  • Parasarathy H, Schall J, Graybiel A (1992) Distributed but convergent ordering of corticostriatal projections: analysis of the frontal eye field and the supplementary eye field in the macaque monkey. J Neurosci 12:4468–4488

    Google Scholar 

  • Pasupathy A, Miller EK (2005) Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature 433:873–876

    Article  PubMed  CAS  Google Scholar 

  • Rainer G, Rao SC, Miller EK (1999) Prospective coding for objects in the primate prefrontal cortex. J Neurosci 19:5493–5505

    PubMed  CAS  Google Scholar 

  • Reynolds JN, Hyland BI, Wickens JR (2001) A cellular mechanism of reward-related learning. Nature 413:67–70

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW (2005) Chemistry of the mind: neurochemical modulation of prefrontal cortical function. J Comp Neurol 493:140–146

    Article  PubMed  CAS  Google Scholar 

  • Roberts WA, Mazmanian DS (1988) Concept learning at different levels of abstraction by pigeons, monkeys, and people. J Exp Psychol Anim Behav Proc 14:247–260

    Article  Google Scholar 

  • Sawamura H, Shima K, Tanji J (2002) Numerical representation for action in the parietal cortex of the monkey. Nature 415:918–922

    Article  PubMed  CAS  Google Scholar 

  • Schoenbaum G, Setlow B (2001) Integrating orbitofrontal cortex into prefrontal theory: common processing themes across species and subdivisions. Learn Mem 8:134–147

    Article  PubMed  CAS  Google Scholar 

  • Schultz W, Dickinson A (2000) Neuronal coding of prediction errors. Ann Rev Neurosci 23:473–500

    Article  PubMed  CAS  Google Scholar 

  • Selemon LD, Goldman-Rakic (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5:776–794

    PubMed  CAS  Google Scholar 

  • Shelton C (2000) Morphable surface models. Intl J Computer Vis 38:75–91

    Article  Google Scholar 

  • Sigala N, Logothetis NK (2002) Visual categorization shapes feature selectivity in the primate temporal cortex. Nature 415:318–320

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K (1996) Inferotemporal cortex and object vision. Ann Rev Neurosci 19:109–139

    Article  PubMed  CAS  Google Scholar 

  • Tomita H, Ohbayashi M, Nakahara K, Hasegawa I, Miyashita Y (1999) Top-down signal from prefrontal cortex in executive control of memory retrieval [see comments]. Nature 401:699–703

    Article  PubMed  CAS  Google Scholar 

  • Tsao DY, Freiwald WA, Tootell RB, Livingstone MS (2006) A cortical region consisting entirely of face-selective cells. Science 311:670–674

    Article  PubMed  CAS  Google Scholar 

  • Van Hoesen GW, Yeterian EH, Lavizzo-Mourey R (1981) Widespread corticostriate projections from temporal cortex of the rhesus monkey. J Comp Neurol 199:205–219

    Article  PubMed  Google Scholar 

  • Vogels R (1999a) Categorization of complex visual images by rhesus monkeys. Part 1: behavioural study. Eur J Neurosci 11:1223–1238

    Article  PubMed  CAS  Google Scholar 

  • Vogels R (1999b) Categorization of complex visual images by rhesus monkeys. Part 2: single-cell study. Eur J Neurosci 11:1239–1255

    Article  PubMed  CAS  Google Scholar 

  • Wallis JD, Miller EK (2003) From rule to response: neuronal processes in the premotor and prefrontal cortex. J Neurophysiol 90:1790–1806

    Article  PubMed  Google Scholar 

  • Wallis JD, Anderson KC, Miller EK (2000) Neuronal representation of abstract rules in the orbital and lateral prefrontal cortices (PFC). Soc Neurosci Abs 365.5: 976

    Google Scholar 

  • Wallis JD, Anderson KC, Miller EK (2001) Single neurons in the prefrontal cortex encode abstract rules. Nature 411:953–956

    Article  PubMed  CAS  Google Scholar 

  • White IM, Wise SP (1999) Rule-dependent neuronal activity in the prefrontal cortex. Exp Brain Res 126:315–335

    Article  PubMed  CAS  Google Scholar 

  • Wilson C, Kawaguchi Y (1996) The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J Neurosci 16:2397–2410

    PubMed  CAS  Google Scholar 

  • Wood JN, Knutson KM, Grafman J (2005) Psychological structure and neural correlates of event knowledge. Cereb Cortex 15:1155–1161

    Article  PubMed  Google Scholar 

  • Wyttenbach RA, May ML, Hoy RR (1996) Categorical perception of sound frequency by crickets. Science 273:1542–1544

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Spelke ES (2000) Large number discrimination in 6-month-old infants. Cognition 74:B1–B11

    Article  PubMed  CAS  Google Scholar 

  • Yeterian EH, Van Hoesen GW (1978) Cortico-striate projections in the rhesus monkey: the organization of certain cortico-caudate connections. Brain Res 139:43–63

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miller, E.K. (2007). The Prefrontal Cortex: Categories, Concepts, and Cognitive Control. In: Bontempi, B., Silva, A.J., Christen, Y. (eds) Memories: Molecules and Circuits. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45702-2_10

Download citation

Publish with us

Policies and ethics