Skip to main content

Gene Action: Developmental Genetics

  • Chapter
Vogel and Motulsky's Human Genetics

Abstract

Developmental genetics studies the mechanisms how genes initiate and control the process by which a single cell can give rise to a mature organism. This includes mechanisms of early patterning, as well as later events that result in the formation and maturation of organ systems. Developmentally active genes exert their effects through many pathways and mechanisms including diffusing morphogens, cell migration, proliferation, and border formation. Transient structures such as the somites, the branchial arches and the apical ecto-dermal ridge serve as scaffold and signaling centers during embryogenesis. Gene defects frequently result in abnormal development with specific phenotypes that reflect the gene's essential functions during embryogenesis. In many instances this results in a combination of malformations that are characteristic for a specific syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashe HL, Briscoe J (2006) The interpretation of morphogen gradients. Development 133:385–394

    Article  CAS  PubMed  Google Scholar 

  2. Benson DW, Silberbach GM, Kavanaugh-McHugh A, Cottrill C, Zhang Y, Riggs S, Smalls O, Johnson MC, Watson MS, Seidman JG, Seidman CE, Plowden J, Kugler JD (1999) Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest 104:1567–1573

    Article  CAS  PubMed  Google Scholar 

  3. Bruneau BG, Nemer G, Schmitt JP, Charron F, Robitaille L, Caron S, Conner DA, Gessler M, Nemer M, Seidman CE, Seidman JG (2001) A murine model of Holt–Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell 106:709–721

    Article  CAS  PubMed  Google Scholar 

  4. Cordero D, Marcucio R, Hu D, Gaffield W, Tapadia M, Helms JA (2004) Temporal perturbations in sonic hedgehog signaling elicit the spectrum of holoprosencephaly pheno-types. J Clin Invest 114:485–494

    CAS  PubMed  Google Scholar 

  5. Dressler GR (2006) The cellular basis of kidney development. Annu Rev Cell Dev Biol 22:509–529

    Article  CAS  PubMed  Google Scholar 

  6. Driever W, Nusslein-Volhard C (1988) A gradient of bicoid protein in Drosophila embryos. Cell 54:83–93

    Article  CAS  PubMed  Google Scholar 

  7. Driever W, Nusslein-Volhard C (1989) The bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo. Nature 337:138–143

    Article  CAS  PubMed  Google Scholar 

  8. Evans PD, Gilbert SL, Mekel-Bobrov N, Vallender EJ, Anderson JR, Vaez-Azizi LM, Tishkoff SA, Hudson RR, Lahn BT (2005) Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans. Science 309:1717–1720

    Article  CAS  PubMed  Google Scholar 

  9. Gelb BD, Tartaglia M (2006) Noonan syndrome and related disorders: dysregulated RAS-mitogen activated protein kinase signal transduction. Hum Mol Genet 15(Spec No 2):R220–R226

    Article  CAS  PubMed  Google Scholar 

  10. Gilbert SF (2006) Developmental biology, 8th edn. Oxford University Press, Oxford

    Google Scholar 

  11. Gridley T (2006) The long and short of it: somite formation in mice. Dev Dyn 235:2330–2336

    Article  PubMed  Google Scholar 

  12. Guerrini R, Marini C (2006) Genetic malformations of cortical development. Exp Brain Res 173:322–333

    Article  PubMed  Google Scholar 

  13. Haltiwanger RS (2002) Regulation of signal transduction pathways in development by glycosylation. Curr Opin Struct Biol 12:593–598

    Article  CAS  PubMed  Google Scholar 

  14. Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15:3059–3087

    Article  CAS  PubMed  Google Scholar 

  15. Jacob J, Briscoe J (2003) Gli proteins and the control of spinal-cord patterning. EMBO Rep 4:761–765

    Article  CAS  PubMed  Google Scholar 

  16. Karsenty G (2003) The complexities of skeletal biology. Nature 423:316–318

    Article  CAS  PubMed  Google Scholar 

  17. Kornak U, Mundlos S (2003) Genetic disorders of the skeleton: a developmental approach. Am J Hum Genet 73:447–474

    Article  CAS  PubMed  Google Scholar 

  18. Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A, Friedrich W, Delling G, Jentsch TJ (2001) Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104:205–215

    Article  CAS  PubMed  Google Scholar 

  19. Krumlauf R (1992) Evolution of the vertebrate Hox homeo-box genes. Bioessays 14:245–252

    Article  CAS  PubMed  Google Scholar 

  20. Lentze M, Schaub J, Schulte FJ, Spranger J (2007) Pädiatrie: grundlagen und praxis, 3rd edn. Springer, Heidelberg

    Google Scholar 

  21. Maeda RK, Karch F (2006) The ABC of the BX-C: the bithorax complex explained. Development 133:1413–1422

    Article  CAS  PubMed  Google Scholar 

  22. Massague J, Chen YG (2000) Controlling TGF-beta signaling. Genes Dev 14:627–644

    CAS  PubMed  Google Scholar 

  23. Mundlos S (2009) The brachydactylies - a molecular disease family. Clin Genet 76:123–136

    Article  CAS  PubMed  Google Scholar 

  24. Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, Lindhout D, Cole WG, Henn W, Knoll JH, Owen MJ, Mertelsmann R, Zabel BU, Olsen BR (1997) Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89:773–779

    Article  CAS  PubMed  Google Scholar 

  25. Ramsdell AF (2005) Left-right asymmetry and congenital cardiac defects: getting to the heart of the matter in vertebrate left-right axis determination. Dev Biol 288:1–20

    Article  CAS  PubMed  Google Scholar 

  26. Reiner O, Coquelle FM (2005) Missense mutations resulting in type 1 lissencephaly. Cell Mol Life Sci 62:425–434

    Article  CAS  PubMed  Google Scholar 

  27. Roessler E, Muenke M (1998) Holoprosencephaly: a paradigm for the complex genetics of brain development. J Inherit Metab Dis 21:481–497

    Article  CAS  PubMed  Google Scholar 

  28. Schwabe GC, Mundlos S (2004) Genetics of congenital hand anomalies. Handchir Mikrochir Plast Chir 36:85–97

    Article  CAS  PubMed  Google Scholar 

  29. Seemann P, Schwappacher R, Kjaer KW, Krakow D, Lehmann K, Dawson K, Stricker S, Pohl J, Ploger F, Staub E, Nickel J, Sebald W, Knaus P, Mundlos S (2005) Activating and deactivating mutations in the receptor interaction site of GDF5 cause symphalangism or brachydactyly type A2. J Clin Invest 115:2373–2381

    Article  CAS  PubMed  Google Scholar 

  30. Smith JC (1994) Hedgehog, the floor plate, and the zone of polarizing activity. Cell 76:193–196

    Article  CAS  PubMed  Google Scholar 

  31. Srivastava D, Olson EN (2000) A genetic blueprint for cardiac development. Nature 407:221–226

    Article  CAS  PubMed  Google Scholar 

  32. Tickle C (2002) Molecular basis of vertebrate limb patterning. Am J Med Genet 112:250–255

    Article  PubMed  Google Scholar 

  33. Vincent J-P, Briscoe J (2001) Morphogens. Curr Biol 11(21):R851–854

    Article  CAS  PubMed  Google Scholar 

  34. Wiedemann HR, Kunze J, Dibbern H (1989) Atlas der klinischen Syndrome (Atlas of clinical syndromes) fuer Klinik und Praxis, 3rd edn. Schattauer, Stuttgart

    Google Scholar 

  35. Wolpert L Principles of development, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mundlos, S. (2010). Gene Action: Developmental Genetics. In: Speicher, M.R., Motulsky, A.G., Antonarakis, S.E. (eds) Vogel and Motulsky's Human Genetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37654-5_15

Download citation

Publish with us

Policies and ethics