Skip to main content

Nanoelectromechanical Systems — Experiments and Modeling

  • Chapter
Applied Scanning Probe Methods VII

Part of the book series: NanoScience and Technology ((NANO))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rueckes T, Kim K, Joselevich E, Tseng GY, Cheung CL, Lieber CM (2000) Carbon nanotube-based nonvolatile random access memory for molecular computing, Science 289:94–97

    CAS  Google Scholar 

  2. Ekinci KL, Roukes ML (2005) Nanoelectromechanical systems. Review of Scientific Instruments 76:061101

    Google Scholar 

  3. Sazonova V, Yaish Y, Ustunel H, Roundy D, Arias TA, Mc Euen PL (2004) A tunable carbon nanotube electromechanical oscillator. Nature 431:284–287

    CAS  Google Scholar 

  4. Ilic B, Craighead HG, Krylov S, Senaratne W, Ober C, Neuzil P (2004) Attogram detection using nanoelectromechanical oscillators. Journal of Applied Physics 95:3694–3703

    CAS  Google Scholar 

  5. Davis ZJ, Abadal G, Kuhn O, Hansen O, Grey F, Boisen A (2000) Fabrication and characterization of nanoresonating devices for mass detection. Journal of Vacuum Science and Technology B 18:612–616

    CAS  Google Scholar 

  6. Roukes ML (1999) Yoctocalorimetry: phonon counting in nanostructures. Physica B 263:1–15

    Google Scholar 

  7. Roukes ML (2000) Nanoelectromechanical systems, presented at Technical Digest of the 2000 Solid-State Sensor and Actuator Workshop

    Google Scholar 

  8. Cleland AN, Roukes ML(1996) Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals. Applied Physics Letters 69:2653–2655

    CAS  Google Scholar 

  9. Akita S, Nakayama Y, Mizooka S, Takano Y, Okawa T, Miyatake Y, Yamanaka S, Tsuji M, Nosaka T (2001) Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope. Applied Physics Letters 79:1691–1693

    CAS  Google Scholar 

  10. Fennimore AM, Yuzvinsky TD, Han WQ, Fuhrer MS, Cumings J, Zettl A (2003) Rotational actuators based on carbon nanotubes. Nature 424:408–410

    CAS  Google Scholar 

  11. Ke CH, Espinosa HD (2004) Feedback controlled nanocantilever device. Applied Physics Letters 85:681–683

    CAS  Google Scholar 

  12. Kim P, Lieber CM (1999) Nanotube nanotweezers. Science 286:2148–2150

    CAS  Google Scholar 

  13. Kinaret JM, Nord T, Viefers S (2003) Acarbon-nanotube-based nanorelay. Applied Physics Letters 82:1287–1289

    CAS  Google Scholar 

  14. Jang JE, Cha SN, Choi Y, Amaratunga GAJ, Kang DJ, Hasko DG, Jung JE, Kim JM (2005) Nanoelectromechanical switcheswith vertically aligned carbon nanotubes. Applied Physics Letters 87:163114

    Google Scholar 

  15. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    CAS  Google Scholar 

  16. Ajayan PM (1999) Nanotubes from carbon, Chemical Reviews 99:1787–1799

    CAS  Google Scholar 

  17. Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220–222

    CAS  Google Scholar 

  18. Journet C, Maser WK, Bernier P, Loiseau A, delaChapelle ML, Lefrant S, Deniard P, Lee R, Fischer JE (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758

    CAS  Google Scholar 

  19. Thess A, Lee R, Nikolaev P, Dai HJ, Petit P, Robert J, Xu CH, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487

    CAS  Google Scholar 

  20. Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, Zhou WY, Zhao RA, Wang G (1996) Large-scale synthesis of aligned carbon nanotubes. Science 274:1701–1703

    CAS  Google Scholar 

  21. Qian D, Wagner GJ, Liu WK, Yu MF, Ruoff RS (2002) Mechanics of carbon nanotubes. Applied Mechanics Review 55:495–533

    Google Scholar 

  22. Mc Euen PL, Fuhrer MS, Park HK (2002) Single-walled carbon nanotube electronics. IEEE Transactions on Nanotechnology 1:78–85

    Google Scholar 

  23. Kuzumaki T, Mitsuda Y (2004) Dynamic measurement of electrical conductivity of carbon nanotubes during mechanical deformation by nanoprobe manipulation in transmission electron microscopy. Applied Physics Letters 85:1250–1252

    CAS  Google Scholar 

  24. Liu B, Jiang H, Johnson HT, Huang Y (2004) The influence of mechanical deformation on the electrical properties of single wall carbon nanotubes. Journal of the Mechanics and Physics of Solids 52:1–26

    CAS  Google Scholar 

  25. Tombler TW, Zhou CW, Alexseyev L, Kong J, Dai HJ, Lei L, Jayanthi CS, Tang MJ, Wu SY (2000) Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405:769–772

    CAS  Google Scholar 

  26. Husain A, Hone J, Postma HWC, Huang XMH, Drake T, Barbic M, Scherer A, Roukes ML (2003) Nanowire-based very-high-frequency electromechanical resonator Applied Physics Letters 83:1240–1242

    CAS  Google Scholar 

  27. Williams PA, Papadakis SJ, Patel AM, Falvo MR, Washburn S, Superfine R (2003) Fabrication of nanometer-scale mechanical devices incorporating individual multiwalled carbon nanotubes as torsional springs. Applied Physics Letters 82:805–807

    CAS  Google Scholar 

  28. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975

    CAS  Google Scholar 

  29. Falvo MR, Clary GJ, Taylor RM, Chi V, Brooks FP, Washburn S, Superfine R (1997) Bending and buckling of carbon nanotubes under large strain. Nature 389:582–584

    CAS  Google Scholar 

  30. Falvo MR, Taylor RM, Helser A, Chi V, Brooks FP, Washburn S, Superfine R (1999) Nanometre-scale rolling and sliding of carbon nanotubes. Nature 397:236–238

    CAS  Google Scholar 

  31. Ke CH, Pugno N, Peng B, Espinosa HD (2005) Experiments and modeling of carbon nanotube-based NEMS devices. Journal of the Mechanics and Physics of Solids 53:1314–1333

    CAS  Google Scholar 

  32. Taylor RMII, Superfine R (1999) Advanced Interfaces to Scanning Probe Microscopes, In: Nalwa HS (ed) Handbook of Nanostructured Materials and Nanotechnology 2. New York, Academic

    Google Scholar 

  33. Yu MF, Dyer MJ, Skidmore GD, Rohrs HW, Lu XK, Ausman KD, Von Ehr JR, Ruoff RS (1999) Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope. Nanotechnology 10:244–252

    CAS  Google Scholar 

  34. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640

    CAS  Google Scholar 

  35. Smith PA, Nordquist CD, Jackson TN, Mayer TS, Martin BR, Mbindyo J, Mallouk TE (2000) Electric-field assisted assembly and alignment of metallic nanowires. Applied Physics Letters 77:1399–1401

    CAS  Google Scholar 

  36. Chen XQ, Saito T, Yamada H, Matsushige K (2001) Aligning single-wall carbon nanotubes with an alternating-current electric field. Applied Physics Letters 78:3714–3716

    CAS  Google Scholar 

  37. Chung J, Lee J (2003) Nanoscale gap fabrication and integration of carbon nanotubes by micromachining. Sensors and Actuators A 104:229–235

    Google Scholar 

  38. Yamamoto K, Akita S, Nakayama Y (1998) Orientation and purification of carbon nanotubes using ac electrophoresis. Journal of Physics D: Applied Physics 31:L34–L36

    CAS  Google Scholar 

  39. Hughes MP, Morgan H (1998) Dielectrophoretic trapping of single sub-micrometre scale bioparticles. Journal of Physics D: Applied Physics 31:2205–2210

    CAS  Google Scholar 

  40. Ramos A, Morgan H, Green NG, Castellanos A (1998) Ac electrokinetics: a review of forces in microelectrode structures. Journal of Physics D: Applied Physics 31:2338–2353

    CAS  Google Scholar 

  41. Krupke R, Hennrich F, von Lohneysen H, Kappes MM (2003) Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301:344–347

    CAS  Google Scholar 

  42. Lee SW, Lee DS, Morjan RE, Jhang SH, Sveningsson M, Nerushev OA, Park YW, Campbell EEB (2004) A three-terminal carbon nanorelay. Nano Letters 4:2027–2030

    CAS  Google Scholar 

  43. Huang Y, Duan XF, Wei QQ, Lieber CM (2001) Directed assembly of one-dimensional nanostructures into functional networks. Science 291:630–633

    CAS  Google Scholar 

  44. Fujiwara M, Oki E, Hamada M, Tanimoto Y, Mukouda I, Shimomura Y (2001) Magnetic orientation and magnetic properties of a single carbon nanotube. Journal of Physical Chemistry A 105:4383–4386

    CAS  Google Scholar 

  45. Huang SM, Dai LM, Mau AWH (1999) Patterned growth and contact transfer of well-aligned carbon nanotube films. Journal of Physical Chemistry B 103:4223–4227

    CAS  Google Scholar 

  46. Dai HJ (2000) Physics World 13:43

    CAS  Google Scholar 

  47. Kong J, Soh HT, Cassell AM, Quate CF, Dai HJ (1998) Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers Nature 395:878–881

    CAS  Google Scholar 

  48. Zhang YG, Chang AL, Cao J, Wang Q, Kim W, Li YM, Morris N, Yenilmez E, Kong J, Dai HJ (2001) Electric-field-directed growth of aligned single-walled carbon nanotubes. Applied Physics Letters 79:3155–3157

    CAS  Google Scholar 

  49. Dai HJ (2002) Accounts of Chemical Research 35:1035

    CAS  Google Scholar 

  50. Nojeh A, Ural A, Pease RF, Dai HJ (2004) Electric-field-directed growth of carbon nanotubes in two dimensions. Journal of Vacuum Science and Technology B 22:3421–3425

    CAS  Google Scholar 

  51. Rao SG, Huang L, Setyawan W, Hong SH (2003) Large-scale assembly of carbon nanotubes. Nature 425:36–37

    CAS  Google Scholar 

  52. Piner RD, Zhu J, Xu F, Hong SH, Mirkin CA (1999) Dip-pen nanolithography. Science 283:661–663

    CAS  Google Scholar 

  53. Roukes ML (2001) Nanoelectromechanical systems face the future, Physics World 14:25–31

    CAS  Google Scholar 

  54. Ekinci KL (2005) Electromechanical transducers at the nanoscale: Actuation and sensing of motion in nanoelectromechanical systems (NEMS). Small 1:786–797

    CAS  Google Scholar 

  55. Badzey RL, Zolfagharkhani G, Gaidarzhy A, Mohanty P (2004) A controllable nanomechanical memory element. Applied Physics Letters 85:3587–3589

    CAS  Google Scholar 

  56. Craighead HG (2000) Nanoelectromechanical systems. Science 290:1532–1535

    CAS  Google Scholar 

  57. Zhu Y, Moldovan N, Espinosa HD (2005) Amicroelectromechanical load sensor for in situ electron and X-ray microscopy tensile testing of nanostructures. Applied Physics Letters 86:013506

    Google Scholar 

  58. Zalalutdinov M, Ilic B, Czaplewski D, Zehnder A, Craighead HG, Parpia JM (2000) Frequency-tunable micromechanical oscillator. Applied Physics Letters 77:3287–3289

    CAS  Google Scholar 

  59. Huang XMH, Zorman CA, Mehregany M, Roukes ML (2003) Nanodevice motion at microwave frequencies. Nature 421:496–496

    CAS  Google Scholar 

  60. Poncharal P, Wang ZL, Ugarte D, De Heer WA (1999) Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283:1513–1516

    CAS  Google Scholar 

  61. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680

    CAS  Google Scholar 

  62. Greywall DS, Yurke B, Busch PA, Pargellis AN, Willett RL (1994) Evading amplifier noise in nonlinear oscillators. Physical Review Letters 72:2992–2995

    Google Scholar 

  63. Cleland AN, Roukes ML (1999) External control of dissipation in a nanometer-scale radiofrequency mechanical resonator. Sensors and Actuators A 72:256–261

    Google Scholar 

  64. Ekinci KL, Yang YT, Roukes ML (2004) Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. Journal of Applied Physics 95:2682–2689

    CAS  Google Scholar 

  65. Mohanty P, Harrington DA, Ekinci KL, Yang YT, Murphy MJ, Roukes ML (2002) Intrinsic dissipation in high-frequency micromechanical resonators. Physical Review B 66:085416

    Google Scholar 

  66. Dresselhaus MS, Dresselaus G, Avouris P (2001) Carbon Nanotubes. Berlin, Heidelberg, New York, Springer

    Google Scholar 

  67. Carr DW, Evoy S, Sekaric L, Craighead HG, Parpia JM (2000) Parametric amplification in a torsional microresonator. Applied Physics Letters 77:1545–1547

    CAS  Google Scholar 

  68. Carr DW, Sekaric L, Craighead HG (1998) Measurement of nanomechanical resonant structures in single-crystal silicon. Journal of Vacuum Science and Technology B 16:3821–3824

    CAS  Google Scholar 

  69. Meyer C, Lorenz H, Karrai K (2003) Optical detection of quasi-static actuation of nanoelectromechanical systems. Applied Physics Letters 83:2420–2422

    CAS  Google Scholar 

  70. Keeler BEN, Carr DW, Sullivan JP, Friedmann TA, Wendt JR (2004) Experimental demonstration of a laterally deformable optical nanoelectromechanical system grating transducer. Optics Letters 29:1182–1184

    Google Scholar 

  71. Kouh T, Karabacak D, Kim DH, Ekinci KL (2005) Diffraction effects in optical interferometric displacement detection in nanoelectromechanical systems. Applied Physics Letters 86:013106

    Google Scholar 

  72. Bocko MF, Stephenson KA, Koch RH (1988) Vacuum tunneling probe — a nonreciprocal, reduced-back-action transducer. Physical Review Letters 61:726–729

    Google Scholar 

  73. Presilla C, Onofrio R, Bocko MF (1992) Uncertainty-principle noise in vacuum-tunneling transducers. Physical Review B 45:3735–3743

    Google Scholar 

  74. Nunes G, Freeman MR (1993) Picosecond resolution in scanning-tunneling-microscopy. Science 262:1029–1032

    CAS  Google Scholar 

  75. Kanda Y (1982) A graphical representation of the piezoresistive coefficients in silicon. IEEE Transactions on Electron Devices 29:64–70

    Google Scholar 

  76. Hjort K, Soderkvist J, Schweitz JA (1994) Gallium-Arsenide as a Mechanical Material. Journal of Micromechanics and Microengineering 4:1–13

    CAS  Google Scholar 

  77. Bargatin I, Myers EB, Arlett J, Gudlewski B, Roukes ML (2005) Sensitive detection of nanomechanical motion using piezoresistive signal downmixing. Applied Physics Letters 86:133109

    Google Scholar 

  78. Dai HJ, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384:147–150

    CAS  Google Scholar 

  79. Wong SS, Joselevich E, Woolley AT, Cheung CL, Lieber CM (1998) Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394:52–55

    CAS  Google Scholar 

  80. Jonsson LM, Axelsson S, Nord T, Viefers S, Kinaret JM (2004) High frequency properties of a CNT-based nanorelay. Nanotechnology 15:1497–1502

    CAS  Google Scholar 

  81. Ke CH, Espinosa HD (2006) In-situ electron microscopy electro-mechanical characterization of a NEMS bistable device, Small, (in press)

    Google Scholar 

  82. Ke CH (2006) Development of a Feedback Controlled Carbon Nanotube-Based Nanoelectromechanical Device. PhD dissertation, Northwestern University

    Google Scholar 

  83. Zapol P, Sternberg M, Curtiss LA, Frauenheim T, Gruen DM (2002) Tight-binding molecular-dynamics simulation of impurities in ultrananocrystalline diamond grain boundaries. Physical Review B 65:045403

    Google Scholar 

  84. Sternberg M, Curtiss LA, Gruen DM, Kedziora G, Horner DA, Redfern PC, Zapol P (2006) Carbon ad-dimer defects in carbon nanotubes. Physical Review Letters 96:075506

    CAS  Google Scholar 

  85. Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52

    CAS  Google Scholar 

  86. Zhou CW, Kong J, Dai HJ (2000) Intrinsic electrical properties of individual single-walled carbon nanotubes with small band gaps. Physical Review Letters 84:5604–5607

    CAS  Google Scholar 

  87. Minot ED, Yaish Y, Sazonova V, Mc Euen PL (2004) Determination of electron orbital magnetic moments in carbon nanotubes. Nature 428:536–539

    CAS  Google Scholar 

  88. Hu JT, Min OY, Yang PD, Lieber CM (1999) Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 399:48–51

    CAS  Google Scholar 

  89. Hu JT, Odom TW, Lieber CM (1999) Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Accounts of Chemical Research 32:435–445

    CAS  Google Scholar 

  90. Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279:208–211

    CAS  Google Scholar 

  91. Yu DP, Lee CS, Bello I, Sun XS, Tang YH, Zhou GW, Bai ZG, Zhang Z, Feng SQ (1998) Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature. Solid State Communications 105:403–407

    CAS  Google Scholar 

  92. Ji CX, Searson PC (2002) Fabrication of nanoporous gold nanowires. Applied Physics Letters 81:4437–4439

    CAS  Google Scholar 

  93. Wong TC, Li CP, Zhang RQ, Lee ST (2004) Gold nanowires from silicon nanowire templates. Applied Physics Letters 84:407–409

    CAS  Google Scholar 

  94. Bhattacharyya S, Saha SK, Chakravorty D (2000) Silver nanowires grown in the pores of a silica gel. Applied Physics Letters 77:3770–3772

    CAS  Google Scholar 

  95. Barbic M, Mock JJ, Smith DR, Schultz S (2002) Single crystal silver nanowires prepared by the metal amplification method. Journal of Applied Physics 91:9341–9345

    CAS  Google Scholar 

  96. Malandrino G, Finocchiaro ST, Fragala IL (2004) Silver nanowires by a sonoself-reduction template process. Journal of Materials Chemistry 14:2726–2728

    CAS  Google Scholar 

  97. Heath JR, Legoues FK (1993) A liquid solution synthesis of single-crystal germanium quantum wires. Chemical Physics Letters 208:263–268

    CAS  Google Scholar 

  98. Greytak AB, Lauhon LJ, Gudiksen MS, Lieber CM (2004) Growth and transport properties of complementary germanium nanowire field-effect transistors. Applied Physics Letters 84:4176–4178

    CAS  Google Scholar 

  99. Ziegler KJ, Lyons DM, Holmes JD, Erts D, Polyakov B, Olin H, Svensson K, Olsson E (2004) Bistable nanoelectromechanical devices. Applied Physics Letters 84:4074–4076

    CAS  Google Scholar 

  100. Wu YY, Yang PD (2000) Germanium nanowire growth via simple vapor transport. Chemistry of Materials 12:605–607

    CAS  Google Scholar 

  101. Banerjee D, Lao JY, Wang DZ, Huang JY, Ren ZF, Steeves D, Kimball B, Sennett M (2003) Large-quantity free-standing ZnO nanowires. Applied Physics Letters 83:2061–2063

    CAS  Google Scholar 

  102. Dai Y, Zhang Y, Bai YQ, Wang ZL (2003) Bicrystalline zinc oxide nanowires. Chemical Physics Letters 375:96–101

    CAS  Google Scholar 

  103. Mock JJ, Oldenburg SJ, Smith DR, Schultz DA, Schultz S (2002) Composite plasmon resonant nanowires. Nano Letters 2:465–469

    CAS  Google Scholar 

  104. Kim KH, Moldovan N, Espinosa HD (2005) A nanofountain probe with sub-100 nm molecular writing resolution. Small 1:632–635

    CAS  Google Scholar 

  105. Lifshitz R, Roukes ML (2000) Thermoelastic damping in micro-and nanomechanical systems. Physical Review B 61:5600–5609

    CAS  Google Scholar 

  106. Huang XMH, Prakash MK, Zorman CA, Mehregany M, Roukes ML (2003) Free-free beam silicon carbide nanomechanical resonators, presented at TRANSDUCERS’03 Proceedings of the 12th International Conference on Solid State Sensors. Actuators and Microsystems, Boston

    Google Scholar 

  107. La Haye MD, Buu O, Camarota B, Schwab KC (2004) Approaching the quantum limit of a nanomechanical resonator. Science 304:74–77

    Google Scholar 

  108. Rudd RE, Broughton JQ (1999) Journal of Modeling and Simulation of Microsystems 1:29

    Google Scholar 

  109. Dequesnes M, Rotkin SV, Aluru NR (2002) Calculation of pull-in voltages for carbonnanotube-based nanoelectromechanical switches. Nanotechnology 13:120–131

    Google Scholar 

  110. Liu WK, Karpov EG, Zhang S, Park HS (2004) An introduction to computational nanomechanics and materials. Computer Methods in Applied Mechanics and Engineering 193:1529–1578

    Google Scholar 

  111. Karpov EG, Wagner GJ, Liu WK (2005) A Green’s function approach to deriving nonreflecting boundary conditions in molecular dynamics simulations. International Journal for Numerical Methods in Engineering 62:1250–1262

    Google Scholar 

  112. Wagner GJ, Karpov EG, Liu WK (2004) Molecular dynamics boundary conditions for regular crystal lattices. Computer Methods in Applied Mechanics and Engineering 193: 1579–1601

    Google Scholar 

  113. Karpov EG, Stephen NG, Dorofeev DL (2002) On static analysis of finite repetitive structures by discrete Fourier transform. International Journal of Solids and Structures 39:4291–4310

    Google Scholar 

  114. Karpov EG, Stephen NG, Liu WK (2003) Initial tension in randomly disordered periodic lattices. International Journal of Solids and Structures 40:5371–5388

    Google Scholar 

  115. Moriarty JA, Belak JF, Rudd RE, Soderlind P, Streitz FH, Yang LH (2002) Quantumbased atomistic simulation of materials properties in transition metals. Journal of Physics: Condensed Matter 14:2825–2857

    CAS  Google Scholar 

  116. Belytschko T, Liu WK, Moran B (2000) Nonlinear Finite Elements for Continua and Structures. New York, Wiley

    Google Scholar 

  117. Curtin WA, Miller RE (2003) Atomistic/continuum coupling in computational materials science. Modelling and Simulation in Materials Science and Engineering 11:R33–R68

    CAS  Google Scholar 

  118. Vvedensky DD (2004) Multiscale modeling of nanostructures. Journal of Physics: Condensed Matter 16:1537–1576

    Google Scholar 

  119. Miller RE, Tadmor EB (2002) The quasicontinuum method: Overview, applications and current directions. Journal of Computer-Aided Materials Design 9:203–239

    CAS  Google Scholar 

  120. Abraham FF, Broughton JQ, Bernstein N, Kaxiras E (1998) Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture. Europhysics Letters 44:783–787

    CAS  Google Scholar 

  121. Broughton JQ, Abraham FF, Bernstein N, Kaxiras E (1999) Concurrent coupling of length scales: Methodology and application. Physical Review B 60:2391–2403

    CAS  Google Scholar 

  122. Rudd RE, Broughton JQ (2000) Concurrent coupling of length scales in solid state systems. Physica Status Solidi B 217:251–291

    CAS  Google Scholar 

  123. Tadmor EB, Ortiz M, Phillips R (1996) Quasicontinuum analysis of defects in solids. Philosophical Magazine A 73:1529–1563

    Google Scholar 

  124. Tadmor EB, Phillips R, Ortiz M (1996) Mixed atomistic and continuum models of deformation in solids. Langmuir 12:4529–4534

    CAS  Google Scholar 

  125. Rodney D, Phillips R (1999) Structure and strength of dislocation junctions: An atomic level analysis, Physical Review Letters 82:1704–1707

    CAS  Google Scholar 

  126. Shin CS, Fivel MC, Rodney D, Phillips R, Shenoy VB, Dupuy L (2001) Formation and strength of dislocation junctions in FCC metals: A study by dislocation dynamics and atomistic simulations. Journal De Physique IV 11:19–26

    CAS  Google Scholar 

  127. Shenoy VB, Miller R, Tadmor EB, Phillips R, Ortiz M (1998) Quasicontinuum models of interfacial structure and deformation. Physical Review Letters 80:742–745

    CAS  Google Scholar 

  128. Shenoy VB, Miller R, Tadmor EB, Rodney D, Phillips R, Ortiz M (1999) An adaptive finite element approach to atomic-scale mechanics — the quasicontinuum method. Journal of the Mechanics and Physics of Solids 47:611–642

    Google Scholar 

  129. Tadmor EB, Miller R, Phillips R, Ortiz M (1999) Nanoindentation and incipient plasticity. Journal of Materials Research 14:2233–2250

    CAS  Google Scholar 

  130. Miller R, Ortiz M, Phillips R, Shenoy V, Tadmor EB (1998) Quasicontinuum models of fracture and plasticity. Engineering Fracture Mechanics 61:427–444

    Google Scholar 

  131. Miller R, Tadmor EB, Phillips R, Ortiz M (1998) Quasicontinuum simulation of fracture at the atomic scale. Modelling and Simulation in Materials Science and Engineering 6:607–638

    CAS  Google Scholar 

  132. Park HS, Karpov EG, Liu WK, Klein PA (2005) The bridging scale for two-dimensional atomistic/continuum coupling. Philosophical Magazine 85:79–113

    CAS  Google Scholar 

  133. Wagner GJ, Liu WK (2003) Coupling of atomistic and continuum simulations using a bridging scale decomposition. Journal of Computational Physics 190:249–274

    Google Scholar 

  134. Qian D, Wagner GJ, Liu WK (2004) A multiscale projection method for the analysis of carbon nanotubes, Computer Methods in Applied Mechanics and Engineering 193:1603–1632

    Google Scholar 

  135. Belytschko T, Xiao SP (2003) Coupling methods for continuum model with molecular model. International Journal for Multiscale Computational Engineering 1:115–126

    Google Scholar 

  136. Ke CH, Espinosa HD (2005) Numerical analysis of nanotube-based NEMS devices — Part I: Electrostatic charge distribution on multiwalled nanotubes. Journal of Applied Mechanics-Transactions of the ASME 72:721–725

    Article  Google Scholar 

  137. Ke CH, Espinosa HD, Pugno N (2005) Numerical analysis of nanotube based NEMS devices — Part II: Role of finite kinematics, stretching and charge concentrations. Journal of Applied Mechanics — Transactions of the ASME 72:726–731

    Google Scholar 

  138. Pugno N, Ke CH, Espinosa HD (2005) Analysis of doubly clamped nanotube devices in the finite deformation regime. Journal of Applied Mechanics — Transactions of the ASME 72:445–449

    Google Scholar 

  139. Dequesnes M, Tang Z, Aluru NR (2004) Static and dynamic analysis of carbon nanotubebased switches. Journal of Engineering Materials and Technology — Transactions of the ASME 126:230–237

    CAS  Google Scholar 

  140. Lennard-Jones JE (1930) Perturbation problems in quantum mechanics. Proceeding of the Royal Society of London Series A 129:598–615

    CAS  Google Scholar 

  141. Girifalco LA, Hodak M, Lee RS (2000) Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Physical Review B 62:13104–13110

    CAS  Google Scholar 

  142. Girifalco LA (1992) Molecular-Properties of C-60 in the Gas and Solid-Phases Journal of Physical Chemistry 96:858–861

    CAS  Google Scholar 

  143. Hayt WABJ (2001) Engineering Electromagnetics, 6th edn. New York, McGraw-Hill

    Google Scholar 

  144. Lou L, Nordlander P, Smalley RE (1995) Fullerene nanotubes in electric-fields. Physical Review B 52:1429–1432

    CAS  Google Scholar 

  145. Krcmar M, Saslow WM, Zangwill A (2003) Electrostatics of conducting nanocylinders. Journal of Applied Physics 93:3495–3500

    CAS  Google Scholar 

  146. Rotkin SV, Bulashevich KA, Aluru NR (2002) Atomistic capacitance of a nanotube electromechanical device. International Journal of Nanoscience 1:337–346

    CAS  Google Scholar 

  147. Bulashevich KA, Rotkin SV (2002) Nanotube devices: A microscopic model. JEPT Letters 75:205–209

    CAS  Google Scholar 

  148. Keblinski P, Nayak SK, Zapol P, Ajayan PM (2002) Charge distribution and stability of charged carbon nanotubes. Physical Review Letters 89:255503

    CAS  Google Scholar 

  149. Smythe WR (1956) Charged Right Circular Cylinder. Journal of Applied Physics 27:917–920

    Google Scholar 

  150. Yakobson BI, Campbell MP, Brabec CJ, Bernholc J (1997) High strain rate fracture and C-chain unraveling in carbon nanotubes. Computational Materials Science 8:341–348

    CAS  Google Scholar 

  151. Liu WK, Karpov EG, Park HS (2006) Nano Mechanics and Materials: Theory, Multiscale Methods and Applications. New York, Wiley

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Espinosa, H.D., Ke, C. (2007). Nanoelectromechanical Systems — Experiments and Modeling. In: Bhushan, B., Fuchs, H. (eds) Applied Scanning Probe Methods VII. NanoScience and Technology. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-37321-6_4

Download citation

Publish with us

Policies and ethics