Skip to main content

Competitive Networks, Indirect Interactions, and Allelopathy: A Microbial Viewpoint on Plant Communities

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 68))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed M, Wardle DA (1994) Allelopathic potential of vegetative and flowering ragwort (Senecio jabobaea L.) plants against associated pasture species. Plant Soil 164:61–68.

    Article  CAS  Google Scholar 

  • Allen EB, Forman RT (1976) Plant species removals and old-field community structure and stability. Ecology 57:1233–1243.

    Article  Google Scholar 

  • Andrewartha HG, Birch LC (1954) The distribution and abundance of animals. The University of Chicago Press, Chicago, Illinois.

    Google Scholar 

  • Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM 2003 Allelopathy and exotic plants: from genes to invasion. Science 301:1377–1380.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin IT (2003) At last, evidence of weapons of mass destruction. Science STKE, p 42.

    Google Scholar 

  • Berdy J (1974) Recent developments of antibiotic research and classification of antibiotics according to chemical structure. Adv Appl Microbiol 18:309–406.

    Article  PubMed  CAS  Google Scholar 

  • Bertin C, Yang CX, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83.

    Article  CAS  Google Scholar 

  • Buss LW, Jackson JBC (1979) Competitive networks: nontransitive competitive relationships in cryptic coral reef environments. Am Nat 113:223–234.

    Article  Google Scholar 

  • Callaway RM (1994) Facilitative and interfering effects of Arthrocnemum subterminale on winter annuals in California salt marsh. Ecology 75:681–686.

    Article  Google Scholar 

  • Callaway RM, Nadkarni NM, Mahall BE. (1991) Facilitating and interfering effects of Quercus douglasii in central California. Ecology 72:1484–1499.

    Article  Google Scholar 

  • Callaway RM, DeLucia EH, Moore D, Nowak R., Schlesinger WD (1996) Competition and facilitation: contrasting effects of Artemisia tridentata on Pinus ponderosa versus P. monophylla. Ecology 77:2130–2141.

    Article  Google Scholar 

  • Callaway RM, Pennings SC (2000) Facilitation may buffer competitive effects: indirect and diffuse interactions among salt marsh plants. Am Nat 156:416–424.

    Article  Google Scholar 

  • Callaway RM, Reinhart KO, Tucker SC, Pennings SC (2001) Effects of epiphytic lichens on host preference of the vascular epiphyte Tillandsia usneoides. Oikos 94:433–441.

    Article  Google Scholar 

  • Case TJ (1991) Invasion resistance, species build-up and community collapse in metapopulation models with interspecies competition. Biol J Linnean Soc 42:239–266.

    Article  Google Scholar 

  • Chesson PL (1983) Coexistence of competitors in a stochastic environment: the storage effect. Lecture Notes in Biomathematics 52:188–198.

    Google Scholar 

  • Chesson PL, Huntly N (1993) Temporal hierarchies of variation and the maintenance of diversity. Plant Species Biol 8:195–206.

    Article  Google Scholar 

  • Clark JS, LaDeau S Ibanez I (2004) Fecundity of trees and the colonization competition hypothesis. Ecol Monogr 74:415–442.

    Article  Google Scholar 

  • Cody ML (1986) Structural niches in plant communities. In: Diamond J, Case TJ (eds) Community ecology. Harper and Row, New York, pp 381–405.

    Google Scholar 

  • Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: Den Boer PJ, Gradwell G (eds) Dynamics of populations. Wageningen, pp 298–312.

    Google Scholar 

  • Connolly J (1997) Substitutive experiments and the evidence for competitive hierarchies in plant communities. Oikos 80:179–182.

    Article  Google Scholar 

  • Czárán TL, Hoekstra RF, Pagie L (2002) Chemical warfare between microbes promotes biodiversity. Proc Natl Acad Sci 99:786–790.

    Article  PubMed  CAS  Google Scholar 

  • Czarnota MA, Paul RN, Dayan FE, Nimbal CI, Weston LA (2001) Mode of action, localization of production, chemical nature, and activity of sorgoleone: a potent PSII inhibitor in Sorghum spp. root exudates. Weed Technology 15:813–825.

    Article  CAS  Google Scholar 

  • Davidson DW (1980) Some consequences of diffuse competition in a desert ant community. Am Nat 116:92–105.

    Article  Google Scholar 

  • de Wit CT (1961) Space relationship within populations of one or more species. Soc Exp Biol Symp 15:314–329.

    Google Scholar 

  • Ehlers BK, Thompson J (2004) Do co-occurring plant species adapt to one another? The response of Bromus erectus to the presence of different Thymus vulgaris chemotypes. Oecologia 141:512–518.

    Article  Google Scholar 

  • Fitter A (2003) Making allelopathy respectable. Science 301:1337–1338.

    Article  PubMed  CAS  Google Scholar 

  • Flores HE (1999) “Radicle” biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4:220–226.

    Article  PubMed  Google Scholar 

  • Fowler N (1981) Competition and coexistence in a North Carolina grassland: II. The effects of the experimental removal of species. J Ecol 69:843–854.

    Article  Google Scholar 

  • Gaudet CL, Keddy PA (1995) Competitive performance and species distribution in shoreline plant communities: a comparative approach. Ecology 76: 280–291.

    Article  Google Scholar 

  • Gaudet CL, Keddy PA (1988) A comparative approach to predicting competitive ability from plant traits. Nature 334:242–243.

    Article  Google Scholar 

  • Goldberg DE (1997) Competitive ability: definitions, contingency and correlated traits. In: Silvertown J, Franco M, Harper MJL (eds) Plant life histories: ecology, phylogeny and evolution, 1st edn. The Royal Society, Cambridge, pp 283–306.

    Google Scholar 

  • Goldberg DE, Landa K (1991) Competitive effect and response: hierarchies and correlated traits in the early stages of competition. J Ecol 79:1013–1030.

    Article  Google Scholar 

  • Goldsmith FB (1978) Interaction (competitive) studies as a step towards the synthesis of sea-cliff vegetation. J Ecol 66: 921–931.

    Article  Google Scholar 

  • Grace JB, Gutenspergen GR, Keough J (1993) The examination of a competition matrix for transitivity and intransitive loops. Oikos 68:91–98.

    Article  Google Scholar 

  • Griggs RF (1940) The ecology of rare plants. Bull Torrey Bot Club 67:575–594.

    Article  Google Scholar 

  • Halligan JP (1976) Toxicity of Artemisia californica to four associated herb species. Am Mid Nat 95:406–421.

    Article  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic Press, London.

    Google Scholar 

  • Hierro JL, Callaway RM (2003) Allelopathy and exotic plant invasion. Plant Soil 256:25–39.

    Article  Google Scholar 

  • Herben T, Krahulec F (1990). Competitive hierarchies, reversals of rank order and the de Wit approach: are they compatible? Oikos 58:254–256.

    Article  Google Scholar 

  • Herben T, Hara T, Hadincová V, Kranhulec F, Pechácková S, Skálová H, Suziki J (2001) Neighborhood effects and genetic structure in a clonal grass: the role of the spatial structure of the environment. Plant Spec Biol 16:1–11.

    Article  Google Scholar 

  • Howard TG, Goldberg DE (2001) Competitive response hierarchies for germination, growth, and survival and their influence on abundance. Ecology 82:979–990.

    Google Scholar 

  • Iason GR. Lennon JJ, Pakeman RJ, Thoss V, Beaton JK, Sim DA Elston DA. (2005) Does chemical composition of individual Scots pine trees determine the biodiversity of their associated ground vegetation? Ecol Lett 8:364–369.

    Article  Google Scholar 

  • Jackson JBC, Buss LW (1975) Allelopathy and spatial competition among coral reef invertebrates. Proc Natl Acad Sci 72:5160–5163.

    Article  PubMed  CAS  Google Scholar 

  • James R, Lazdunski C, Pattus F (1991) Bacteriocins, microcins, and antibiotics. Springer, New York.

    Google Scholar 

  • Karlson RH, Jackson JBC (1981) Competitive networks and community structure: a simulation study. Ecology 62:670–678.

    Article  Google Scholar 

  • Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3:157–164.

    Article  Google Scholar 

  • Keddy PA, Shipley B (1989) Competitive hierarchies in herbaceous plant communities. Oikos 54:234–241.

    Article  Google Scholar 

  • Keddy PA, Twolan-Strutt L, Wisheu IC (1994) Competitive effect and response rankings in 20 wetland plants: Are they consistent across three environments? J Ecol 82:635–643.

    Article  Google Scholar 

  • Keddy PA, Nielsen K, Weiher E, Lawson R (2002) Relative competitive performance of 63 species of terrestrial herbaceous plants. J Veg Sci 13:5–16.

    Article  Google Scholar 

  • Kerr B, Riley MA, Feldman M, Bohannan B (2002) Local dispersal and interaction promote coexistence in a real life game of rock–paper–scissors. Nature 418:171–174.

    Article  PubMed  CAS  Google Scholar 

  • Kirkup BC, Riley MA (2004) Antibiotic-mediated antagonism leads to a bacterial game of rock–paper–scissors in vivo. Nature 428:412–414.

    Article  PubMed  CAS  Google Scholar 

  • Lawlor LR (1979) Direct and indirect effects of n-species competition. Oecologia 45:355–364.

    Article  Google Scholar 

  • Levine JM (1999) Indirect facilitation: evidence and predictions from a riparian community. Ecology 80:1762–1769.

    Article  Google Scholar 

  • Levine SH (1976) Competitive interactions in ecosystems. Am Nat 110:903–910.

    Article  Google Scholar 

  • Li X, Wilson SD. (1998) Facilitation among woody plants establishing in an old field. Ecology 79:2694–2705.

    Google Scholar 

  • Linhart YB, Thompson JD (1999) Thyme is of the essence: biochemical polymorphism and multi-species deterrence. Evol Ecol Res 1:151–171.

    Google Scholar 

  • MacArthur RH (1972) Geographical ecology. Harper and Row, New York.

    Google Scholar 

  • Miller TE (1994) Direct and indirect species interactions in an early old-field plant community. Am Nat 143:1007–1025.

    Article  Google Scholar 

  • Mitchley J, Grubb PJ (1986) Control of relative abundance of perennials in chalk grassland in southern England I. Constancy of rank order and results of pot- and field-experiments on the role of interference. J Ecol 74:1139–1166.

    Article  Google Scholar 

  • Nilsson MC (1994). Separation of allelopathy and resource competition by the boreal dwarf shrub Empetrum hermaphroditum Hagerup. Oecologia 98:1–7.

    Article  Google Scholar 

  • Novoplansky A, Goldberg DE (2001) Effects of water pulsing on individual performance and competitive hierarchies in plants, J Veg Sci 12:199–208.

    Article  Google Scholar 

  • Ortega YK, Pearson DE (2005) Weak vs. strong invaders of natural plant communities: assessing invasibility and impact. Ecol Appl 15:651–661.

    Article  Google Scholar 

  • Paine RT (1966) Food web complexity and species diversity. Am Nat.100:65–75.

    Article  Google Scholar 

  • Parker VT, Muller CH (1982) Vegetational and environmental changes beneath isolated live oak trees (Quercus agrifolia) in a California annual grassland. Am Midl Nat 107: 69–81.

    Article  Google Scholar 

  • Parrish JAD, Bazzaz FA (1976) Underground niche separation in successional plants. Ecology 57:1281–1288.

    Article  Google Scholar 

  • Pennings SC (1996) Indirect interactions on coral reefs. In: Birkeland C (ed) Life and death of coral reefs. Chapman and Hall, New York, pp 249–272.

    Google Scholar 

  • Pennings S, Callaway RM (1992) Salt marsh plant zonation: the importance and intensity of competition and physical factors. Ecology 73:681–690.

    Article  Google Scholar 

  • Perry LG, Thelen GC, Ridenour WM, Weir TL, Callaway RM, Paschke MW, Vivanco JM (2005a) Dual role for an allelochemical: (±)-catechin from Centaurea maculosa root exudates regulates conspecific seedling establishment. J Ecol 93:1126–1135.

    Article  CAS  Google Scholar 

  • Perry LG, Johnson C, Alford ER, Vivanco JM, Paschke MW. (2005b) Screening of grassland plants for restoration after spotted knapweed invasion. Restoration Ecol 13:725–735.

    Article  Google Scholar 

  • Reeves P (1972) The bacteriocins. Springer, New York.

    Google Scholar 

  • Ridenour WM, Callaway RM (2001) The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass. Oecologia 126:444–450.

    Article  Google Scholar 

  • Riley MA, Gordon DM (1999) The ecological role of bacteriocins in bacterial competition. Trends Microbiol 7:129–133.

    Article  PubMed  CAS  Google Scholar 

  • Shipley B (1993) A null model for competitive hierarchies in competition matrices. Ecology 74: 1693–1699.

    Article  Google Scholar 

  • Silander JA, Antonovics J (1982) Analysis of interspecific interactions in a coastal plant community—a perturbation approach. Nature 298:557–560.

    Article  Google Scholar 

  • Silvertown J, Dale P (1991) Competitive hierarchies and the structure of herbaceous plant-communities. Oikos 61:441–444.

    Article  Google Scholar 

  • Snaydon RW (1991) Replacement or additive designs for competition studies? J Appl Ecol 28:930–946.

    Article  Google Scholar 

  • Starmer WT, Ganter PF, Aberdeen V, Lachance MA, Phaff HJ (1987) The ecological role of killer yeasts in natural communities of yeasts. Can J Microbiol 33:783–796.

    Article  PubMed  CAS  Google Scholar 

  • Stone L, Roberts A (1991) Conditions for a species to gain an advantage from the presence of competitors. Ecology 72:1964–1972.

    Article  Google Scholar 

  • Suding KN, Goldberg DE (2001) Do disturbances alter competitive hierarchies? Mechanisms of change following gap creation. Ecology 82:2133–2149.

    Article  Google Scholar 

  • Thelen, GC, Vivanco JM, Newingham B, Good W, Bais HP, Landres P, Caesar HA, Callaway RM 2005 Insect herbivory stimulates allelopathic exudation by an invasive plant and the suppression of natives. Ecology Letters 8:209–217.

    Article  Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Tilman D (1988) Plant strategies and the dynamics and structure of plant communities. Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Tilman D (2000) Causes, consequences and ethics of biodiversity. Nature 405:208–211.

    Article  PubMed  CAS  Google Scholar 

  • Trenbath BR (1974) Biomass productivity of mixtures. Adv Agron 26:177–210.

    Article  Google Scholar 

  • Vandermeer J (1980) Saguaros and nurse trees: a new hypothesis to account for population fluctuations. Southwest Nat 25:357–360.

    Article  Google Scholar 

  • Von Holle B, Simberloff D (2004) Testing Fox’s assembly rule: does plant invasion depend on recipient community structure? Oikos 105:551–563.

    Article  Google Scholar 

  • Watt AS (1947) Pattern and process in the plant community. J Ecol 35:1–22.

    Article  Google Scholar 

  • Webb LJ, Tracey JG, Haydock KP (1967) A factor toxic to seedlings of the same species associated with living roots of the non-gregarious subtropical rain forest tree Grevillea robusta. J Appl Ecol 4:13–25.

    Article  Google Scholar 

  • Weir TL, Bais HP, Vivanco JM (2003) Intraspecific and interspecific interactions mediated by a phytotoxin, (±)-catechin, secreted by the roots of Centaurea maculosa (Spotted knapweed). J Chem Ecol 29:2379–2393.

    Article  Google Scholar 

  • Weir TL, Bais HP, Stull VJ, Callaway RM, Thelen GC, Ridenour WM, Bhamidi S, Stermitz FR, Vivanco JM. (2006) Oxalate contributes to the resistance of Gaillardia grandiflora and Lupinus sericeus to a phytotoxin produced by Centaurea maculosa. Planta (in press).

    Google Scholar 

  • Williamson GB (1990) Allelopathy, Koch’s postulates, and the neck riddle. In: Grace JB, Tilman D (eds) Perspectives on plant competition. Academic Press, San Diego, pp 143–162.

    Google Scholar 

  • Wilson SD, Keddy PA (1986) Measuring diffuse competition along an environmental gradient: results from a shoreline plant community. Am Nat 127:862–869.

    Article  Google Scholar 

  • Wooton JT (1992) Indirect effects, prey susceptibility, and habitat selection: impacts of birds on limpets and algae. Ecology 73:981–991.

    Article  Google Scholar 

  • Wooton JT (1994) The nature and consequences of indirect effects in ecological communities. Annu Rev Ecol Syst 25:443–466.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Callaway, R.M., Howard, T.G. (2007). Competitive Networks, Indirect Interactions, and Allelopathy: A Microbial Viewpoint on Plant Communities. In: Esser, K., Löttge, U., Beyschlag, W., Murata, J. (eds) Progress in Botany. Progress in Botany, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36832-8_14

Download citation

Publish with us

Policies and ethics