Skip to main content

Monte Carlo Simulations of Strongly Correlated and Frustrated Quantum Systems

  • Conference paper
High Performance Computing in Science and Engineering ’06
  • 1267 Accesses

Summary

We study the dynamics of the 1D t-J model with nearest neighbor (n.n) interaction at finite doping using the hybrid-loop quantum Monte Carlo. On the basis of the spectral functions of the 1/r 2 t-J model the excitation content for the one- and two-particle spectral functions for the n.n. t-J model are obtained from the Bethe-Ansatz solution and compared with the Monte Carlo results. We find that the procedure describes with extremely hight accuracy the excitation of the n.n. t-J model. We furthermore use quantum Monte Carlo simulations to analyze the phases of ultra-cold bosonic atom gases in optical lattices, in particular in the presence of frustrated and random interaction strength. We find that such systems display interesting quantum phases, such as supersolid and Bose-glass phases, and discuss possible experimental setups to examine such phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Fulde, J. Keller and G. Zwicknagl, Solid State Physics — Advances in Research and Applications 41, 1 (1988).

    Google Scholar 

  2. For a recent review see e.g. P.A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod Phys 78, 269 (2006).

    Article  Google Scholar 

  3. U. Schollwöck, J. Richter, D. J. J. Farnell and R. F. Bishop (Eds.), Quantum Magnetism, Lecture Notes in Physics 645, Springer, Berlin (2004).

    Google Scholar 

  4. B. Paredes et al., Nature 429, 277 (2004).

    Article  Google Scholar 

  5. M. Greiner et al., Nature 415, 39 (2002).

    Article  Google Scholar 

  6. A. Foussats, A. Greco, M. Bejas, and A. Muramatsu, Phys. Rev. B 72, 020504(R) (2005).

    Google Scholar 

  7. S.R. Manmana, A. Muramatsu, and R.M. Noack, AIP Conf. Proc. 789, 269 (2005); ibid 816, 198 (2006).

    Article  Google Scholar 

  8. E. Dagotto and T. M. Rice, Science 271, 618 (1996).

    Article  Google Scholar 

  9. P. A. Bares and G. Blatter and M. Ogata, Phys. Rev. B 44, 130 (1991).

    Article  Google Scholar 

  10. K. Penc, K. Hallberg, F. Mila, and H. Shiba, Phys. Rev. Lett. 77, 1390 (1996).

    Article  Google Scholar 

  11. E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).

    Article  Google Scholar 

  12. H. Benthien, F. Gebhard and E. Jeckelmann, Phy. Rev. Lett. 92, 256401 (2004).

    Article  Google Scholar 

  13. C. Lavalle, M. Arikawa, S. Capponi, F. Assaad, and A. Muramatsu, Phys. Rev. Lett. 90, 216401 (2003).

    Article  Google Scholar 

  14. H. J. M. van Bemmel, et al., Phys. Rev. Lett. 72, 2442 (1994).

    Article  Google Scholar 

  15. D. F. B. ten Haaf, H. J. M. van Bemmel, J. M. J. van Leeuwen, W. van Saarloos and D. M. Ceperley Phys. Rev. B 51, 13039 (1995).

    Article  Google Scholar 

  16. S. Sorella and L. Capriotti, Phys. Rev. B. 61, 2599 (1999).

    Article  Google Scholar 

  17. G. Khaliullin, JETP Lett. 52, 389 (1990).

    Google Scholar 

  18. A. Angelucci, Phys. Rev. B 51, 11580 (1995).

    Article  Google Scholar 

  19. H. G. Evertz, Adv. Phys. 52, 1 (2003).

    Article  Google Scholar 

  20. A. Muramatsu, in Quantum Monte Carlo Methods in Physics and Chemistry, edited by M. Nightingale and C. Umrigar (NATO Science Series, Kluwer, Dordrecht, 1999).

    Google Scholar 

  21. K. S. D. Beach, cond-mat/0403055.

    Google Scholar 

  22. M. Ogata, et al., Phys. Rev. Lett 66, 2388 (1991).

    Article  Google Scholar 

  23. M. Nakamura, K. Nomura and A. Kitazawa, Phys. Rev. Lett. 79, 3214 (1997).

    Article  Google Scholar 

  24. V. Inozemtsev, J. Stat. Phys. 59, 1143 (1990).

    Article  Google Scholar 

  25. C. Lavalle, M. Arikawa and A. Muramatsu, in preparation.

    Google Scholar 

  26. S. Sorella and A. Parola, Phys. Rev. B 57, 6444 (1998).

    Article  Google Scholar 

  27. M. H. Anderson et al., Science 269, 198 (1995).

    Article  Google Scholar 

  28. C. C. Bardley et al., Phys. Rev. Lett. 75, 1687 (1995).

    Article  Google Scholar 

  29. K. B. Davis et al., Phys. Rev. Lett. 75, 3969 (1995).

    Article  Google Scholar 

  30. J. Stenger et al., Nature 396, 345 (1999).

    Article  Google Scholar 

  31. A. Griesmaier et al., Phys. Rev. Lett. 94, 160401 (2005).

    Article  Google Scholar 

  32. B. DeMarco and D. S. Jin, Science 285, 1703 (1999).

    Article  Google Scholar 

  33. J. Jaksch et al., Phys. Rev. Lett. 81, 3108 (1998).

    Article  Google Scholar 

  34. M. P. A. Fisher et al., Phys. Rev. B 40, 546 (1989).

    Article  Google Scholar 

  35. T. Stöferle et al., Phys. Rev. Lett. 91 130403 (2004).

    Google Scholar 

  36. M. Rigol A. Muramatsu, G.G. Batrouni, and R.T. Scalettar, Phys. Rev. Lett. 91, 130403 (2003).

    Article  Google Scholar 

  37. M. Rigol, A. Muramatsu, Phys. Rev. A 69, 053612 (2004).

    Article  Google Scholar 

  38. M. Rigol and A. Muramatsu, Opt. Commun. 243, 33 (2004).

    Article  Google Scholar 

  39. M. Rigol and A. Muramatsu, Phys. Rev. A 70, 031603(R) (2004).

    Google Scholar 

  40. M. Rigol and A. Muramatsu, Phys. Rev. A 70, 043627 (2004).

    Article  Google Scholar 

  41. M. Rigol and A. Muramatsu, Phys. Rev. Lett. 93, 230404 (2004).

    Article  Google Scholar 

  42. M. Rigol and A. Muramatsu, Phys. Rev. Lett. 94, 240403 (2005).

    Article  Google Scholar 

  43. M. Rigol and A. Muramatsu, Phys. Rev. A 72, 013604 (2005).

    Article  Google Scholar 

  44. M. Rigol and A. Muramatsu, Mod. Phys. Lett. B bf 19, 861 (2005).

    Google Scholar 

  45. M. Rigol et al., Phys. Rev. Lett. 95, 218901 (2005).

    Article  Google Scholar 

  46. A. W. Sandvik and J. Kurkijärvi, Phys. Rev. B 43, 5950 (1991).

    Article  Google Scholar 

  47. A. W. Sandvik, Phys. Rev. B 59, R14157 (1999).

    Article  Google Scholar 

  48. O. F. Syljuåsen and A. W. Sandvik, Phys. Rev. E 66, 046701 (2002).

    Article  Google Scholar 

  49. F. Alet, S. Wessel, and M. Troyer, Phys. Rev. E 71, 036706 (2005).

    Article  Google Scholar 

  50. F. Alet et al., J. Phys. Soc. Jpn. Suppl. 74, 30 (2005); source codes available at http://alps.comp-phys.org/.

    Google Scholar 

  51. S. Wessel, et al., Adv. Solid State Phys. 44, 265 (2004).

    Google Scholar 

  52. S. Wessel, et al., Phys. Rev. A 70, 053615 (2004).

    Article  Google Scholar 

  53. S. Wessel, et al., J. Phys. Soc. Jpn. Suppl. 74, 10 (2005).

    Google Scholar 

  54. E. Kim and M. H. W. Chan, Nature 427, 225 (2004); Science 305, 1941 (2004).

    Article  Google Scholar 

  55. O. Penrose and L. Onsager, Phys. Rev. 104, 576 (1956).

    Article  MATH  Google Scholar 

  56. A. J. Leggett, Phys. Rev. Lett. 25, 1543 (1970).

    Article  Google Scholar 

  57. A. Leggett, Science 305, 1921 (2004).

    Article  Google Scholar 

  58. N. Prokof’ev and B. Svistunov, Phys. Rev. Lett. 94, 155302 (2005).

    Article  Google Scholar 

  59. E. Burovski et al., Phys. Rev. Lett. 94, 165301 (2005).

    Article  Google Scholar 

  60. K. Góral, L. Santos and M. Lewenstein, Phys. Rev. Lett. 88, 170406 (2002).

    Article  Google Scholar 

  61. H. P. Büchler and G. Blatter, Phys. Rev. Lett. 91, 130404 (2003).

    Article  Google Scholar 

  62. V. W. Scarola and S. Das Sarma, Phys. Rev. Lett. 95, 03303 (2005).

    Article  Google Scholar 

  63. G. G. Batrouni and R. T. Scalettar, Phys. Rev. Lett. 84, 1599 (2000).

    Article  Google Scholar 

  64. P. Sengupta et al., Phys. Rev. Lett. 94, 207202 (2005).

    Article  Google Scholar 

  65. L. Santos et al., Phys. Rev. Lett. 93 030601 (2004).

    Article  Google Scholar 

  66. S. Wessel and M. Troyer, Phys. Rev. Lett. 95, 127205 (2005).

    Article  Google Scholar 

  67. J. Villain et al., J. Phys. 41, 1263 (1980).

    Google Scholar 

  68. G. H. Wannier, Phys. Rev. 79, 357 (1950).

    Article  MATH  Google Scholar 

  69. G. Murthy, D. Arovas and A. Auerbach, Phys. Rev. B 55, 3104 (1997).

    Article  Google Scholar 

  70. M. Boninsegni, J. Low Temp. Phys. 132, 39 (2003).

    Article  Google Scholar 

  71. D. Heidarian and K. Damle, Phys. Rev. Lett. 95, 127206 (2005).

    Article  Google Scholar 

  72. R. Melko et al., Phys. Rev. Lett. 95, 127207 (2005).

    Article  Google Scholar 

  73. R. B. Dimer et al., Phys. Rev. A 64, 033416 (2001).

    Article  Google Scholar 

  74. P. Horak, J.-Y. Courtois and G. Grynberg, Phys. Rev. A 58, 3953 (2000).

    Article  Google Scholar 

  75. P. W. Anderson, Phys. Rev. B 109, 5 (1958).

    Google Scholar 

  76. E. Tiesinga et al., Phys. Rev. A 47, 4114 (1993).

    Article  Google Scholar 

  77. S. Inouye et al., Nature 392, 151 (1998).

    Article  Google Scholar 

  78. H. Gimperlein, S. Wessel, J. Schmiedmayer, and L. Santos, Phys. Rev. Lett. 95, 170401 (2005).

    Article  Google Scholar 

  79. S. Wildermuth et al., Nature 435, 440 (2005).

    Article  Google Scholar 

  80. J. K. Freericks and H. Monien, Phys. Rev. B 53, 2691 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lavalle, C., Manmana, S.R., Wessel, S., Muramatsu, A. (2007). Monte Carlo Simulations of Strongly Correlated and Frustrated Quantum Systems. In: Nagel, W.E., Jäger, W., Resch, M. (eds) High Performance Computing in Science and Engineering ’06. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36183-1_11

Download citation

Publish with us

Policies and ethics