Skip to main content

Atomistic Simulations of Dislocation — Crack Interaction

  • Conference paper

Summary

The interaction of dislocations with a static mode I crack is studied by large scale molecular dynamics simulations. The model consists of a blunted [001](110) crack in nickel, to which after relaxation at K < K Ic the displacement field of a dislocation is added. The response of the system is monitored during its evolution in the micro-canonical ensemble. The three dimensional nature of the problem requires the simulation of many millions of atoms. The great demands on the computational resources and data storage can only be met by high performance computing platforms and by the development of appropriate simulation methods. The simulations allowed to identify different characteristic processes during the interaction of the impinging dislocation with the crack. In particular, stimulated dislocation emission and cross slip processes are observed to be important for the development of a plastic zone.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Scandian, C., Azzouzi, H., Maloufi, N., Michot, G., George, A.: Dislocation nucleation and multiplication at crack tips in silicon. Phys. Status Solidi A 171 (1999) 67–82

    Article  Google Scholar 

  2. Gally, B.J., Argon, A.S.: Brittle-to-ductile transitions in the fracture of silicon single crystals by dynamic crack arrest. Philos. Mag. A 81 (2001) 699–740

    Article  Google Scholar 

  3. Gumbsch, P., Riedle, J., Hartmaier, A., Fischmeister, H.F.: Controlling factors for the brittle-to-ductile transition in tungsten single crystals. Science 282 (1998) 1293–1295

    Article  Google Scholar 

  4. Gumbsch, P.: Brittle fracture and the breaking of atomic bond. In: Materials Science for the 21st Century. Volume A. JSMS, The Society of Materials Science, Japan (2001) 50–58

    Google Scholar 

  5. Gumbsch, P., Zhou, S., Holian, L.: Molecular dynamics investigation of dynamic crack stability. Phys. Rev. B 55(6) (1997) 3445–3455

    Article  Google Scholar 

  6. Scandian, C.: Conditions d’émission et de multiplication des dislocations à l’extrémité d’une fissure. Application au cas du silicium. PhD thesis, Institut National Polytechnique de Lorraine (2000)

    Google Scholar 

  7. Thomson, R.: Physics of fracture. In Ehrenreich, H., Turnbull, D., eds.: Solid State Physics. Volume 39., New York, Academic Press (1986) 1–129

    Google Scholar 

  8. Mishin, Y.: Atomistic modeling of the γ and γ′-phases of the Ni-Al system. Acta Metall. 52 (2004) 1451–1467

    Google Scholar 

  9. IMD: the ITAP Molecular Dynamics Program. (http://www.itap.physik.unistuttgart.de/~imd)

    Google Scholar 

  10. Roth, J., et al.: IMD — a massively parallel MD package for classical simulations in condensed matter. In Krause, E., Jäger, W., eds.: High Performance Comput. in Sci. and Eng.’ 99, Berlin, Springer (2000) 72–81

    Google Scholar 

  11. Rudhart, C., Rösch, F., Gähler, F., Roth, J., Trebin, H.R.: Crack propagation in icosahedral model quasicrystals. In Krause, E., Jäger, W., Resch, M., eds.: High Performance Computing in Science and Engineering 2003, Heidelberg, Springer (2004) 107–116

    Google Scholar 

  12. Gähler, F., Kohler, C., Roth, J., Trebin, H.R.: Computation of strain distributions in quantum dot nanostructures by means of atomistic simulations. In Krause, E., Jäger, W., eds.: High Performance Computing in Science and Engineering 2002, Heidelberg, Springer (2002) 3–14

    Google Scholar 

  13. Bitzek, E., Gähler, F., Hahn, J., Kohler, C., Krdzalic, G., Roth, J., Rudhart, C., Schaaf, G., Stadler, J., Trebin, H.R.: Recent developments in IMD: Interactions for covalent and metallic systems. In Krause, E., Jäger, W., eds.: High Performance Computing in Science and Engineering 2000, Springer, Heidelberg (2001) 37–47

    Google Scholar 

  14. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  15. Bitzek, E., Koskinen, P., Gähler, F., Moseler, M., Gumbsch, P.: Fire: Structural relaxation made simple. (to be published)

    Google Scholar 

  16. Li, J.: Atomeye: an efficient atomistic configuration viewer. Modelling Simul. Mater. Sci. Eng. 11 (2003) 173–177

    Article  MATH  Google Scholar 

  17. Hartley, C.S., Mishin, Y.: Characterization and visualization of the lattice misfit associated with dislocation cores. Acta Metall. 53 (2005) 1313–1321

    Google Scholar 

  18. Zimmerman, J.A., Kelchner, C.L., Klein, P.A., Hamilton, J.C., Foiles, S.M.: Surface step effects on nanoindentation. Phys. Rev. Lett. 87(16) (2001) (165507-1)–(165507-4)

    Article  Google Scholar 

  19. Bitzek, E., Gumbsch, P.: Dynamics aspects of dislocation motion: atomistic simulations. Mater. Sci. Eng. A 400–401 (2005) 40–44

    Google Scholar 

  20. J.D. Honeycutt, H.C. Andersen: Molecular-dynamics study of melting and freezing of small lennard-jones clusters. J. Phys. Chem. 91 (1987) 4950–4963

    Article  Google Scholar 

  21. Brandl, C.: Untersuchungen von Versetzungen im Rissspannungsfeld. Diplomarbeit, Universität Karlsruhe (TH) (2006)

    Google Scholar 

  22. Bitzek, E., Gumbsch, P.: Atomistic simulation of dislocation-crack interaction. (in preparation)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bitzek, E., Gumbsch, P. (2007). Atomistic Simulations of Dislocation — Crack Interaction. In: Nagel, W.E., Jäger, W., Resch, M. (eds) High Performance Computing in Science and Engineering ’06. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36183-1_10

Download citation

Publish with us

Policies and ethics