Skip to main content

Nature of the Tunguska Impactor Based on Peat Material from the Explosion Area

  • Chapter
Comet/Asteroid Impacts and Human Society

Abstract

The nature of the bright bolide and the giant explosion that took place on June 30, 1908, in the Podkamennaya Tunguska river basin, Central Siberia, is still being discussed. The area with fallen trees is in excess of 2000 square km (Fast et al. 1967), whereas the kinetic energy deposited by the impactor has been estimated to be ca. 15 million tons of TNT equivalent (or 1500 Hiroshima bombs; Vasiljev 1998). Nevertheless, Kolesnikov et al. (1973) have shown that the explosion could not be of nuclear nature. Its energy release was, in fact, too big to be a nuclear explosion. Two other nuclear hypotheses, one of annihilation and one of thermonuclear origin, have been tested by measuring 39Ar activity in rocks and soil at the explosion epicenter. No excess 39Ar was detected, and this method is much more sensitive than the method of measuring radiocarbon in tree rings (Cowan et al. 1965). Likewise no excess beta activity was observed in 1908, or the following years, in two ice cores from Camp Century nor in an ice core from DYE-3, all three on the Greenland ice sheet (Rasmussen et al. 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–1108

    Article  ADS  Google Scholar 

  • Basilevsky AT (1987) Images of asteroid 253 Mathilde (in Russian). Astronomicheskiy Vestnik 31:571–574, or (in English) Sol System Res 31:514–517

    Google Scholar 

  • Bronshten VA (2000) Nature and destruction of the Tunguska cosmical body. Planet Space Sci 48: 855–870

    Article  ADS  Google Scholar 

  • Bronshten VA, Zotkin IT (1995) Tunguska meteorite: fragment of a comet or an asteroid. Solar Syst Res 29:241–245

    ADS  Google Scholar 

  • Churyumov KI (1980) Comets and their observation (in Russian). Nauka, Moscow.

    Google Scholar 

  • Chyba CF, Thomas PJ, Zahnle KJ (1993) The 1908 Tunguska explosion: atmospheric disruption of a stony asteroid. Nature 361:40–44

    Article  ADS  Google Scholar 

  • Cowan C, Atluri CR, Libby WF (1965) Possible anti-matter content of the Tunguska meteor of 1908. Nature 206:861–865

    Article  ADS  Google Scholar 

  • Epiktetova LE (1998) Crushing of the Tunguska Body during its motion through the atmosphere according to eyewitness evidences (in Russian). Internat. Conf. “90 years of the Tunguska Problem (TKT-90)”, Krasnoyarsk, Abstracts

    Google Scholar 

  • Farinella P, Foschini L, Froeschlé Ch, Gonczi R, Jopek TJ, Longo G, Michel P (2001) Probable asteroidal origin of the Tunguska Cosmic Body. Astron Astrophys 377:1081–1097

    Article  ADS  Google Scholar 

  • Fast VG, Bojarkina AP, Baklanov MV (1967) Destruction caused by blast wave of the Tunguska meteorite (in Russian). In: Problema Tungusskogo Meteorita, Part 2, Izdatelstvo Tomskogo Universiteta, Tomsk, pp 62–104

    Google Scholar 

  • Faure G (1986) Principles of isotope geology. John Wiley and Sons, New Work

    Google Scholar 

  • Fesenkov VG (1969) Nature of comets and the Tunguska phenomenon. Solar System Res 3:177–179

    ADS  Google Scholar 

  • Fesenkov VG (1978) Meteorites and Meteor Matter (in Russian). Nauka, Moscow.

    Google Scholar 

  • Florenskij KP (1963) Preliminary results from the 1961 combined Tunguska meteorite expedition (in Russian). Meteoritika 23:3–37

    Google Scholar 

  • Florenskij KP, Ivanov AV, Iljin NP, Petrikova MN, Loseva LE (1968) The chemical composition of the cosmic spherules from the Tunguska explosion area and some problems of differentiation of cosmic body material (in Russian). Geokhimija (10):1163–1173

    Google Scholar 

  • Galimov EM (1968) Geochemistry of stable isotopes of carbon (in Russian). Nedra, Moscow.

    Google Scholar 

  • Ganapathy R (1983) The Tunguska explosion of 1908: discovery of meteoritic debris near the explosion site and the South Pole. Science 220:1158–1161

    Article  ADS  Google Scholar 

  • Gardner A, Hildebrand A, Gilmour I (1992) Isotopic composition and organic geochemistry of nitrogen at the Cretaceous-Tertiary boundary. Meteoritics 27:222–223

    ADS  Google Scholar 

  • Golenetskiy SP, Stepanok VV, Kolesnikov EM (1977) Signs of cosmochemical anomaly in the area of Tunguska Catastrophe 1908 (in Russian). Geochimiya (11):1635–1645

    Google Scholar 

  • Grigoryan SS (1998) The cometary nature of the Tunguska meteorite. On the predictive possibilities of mathematical models. Planet Space Sci 46:213–217

    Article  ADS  Google Scholar 

  • Gruen E, Jessberger EK(1990) Dust. In: Huebner WF (ed) Physics and chemistry of comets. Springer Verlag, Berlin, pp 113–176

    Google Scholar 

  • Halbout J, Mayeda TK, Clayton RN (1986) Carbon isotopes and light element abundances in carbonaceous chondrites. Earth and Planetary Science Letters 80:1–18

    Article  ADS  Google Scholar 

  • Hou QL, Ma PX, Kolesnikov EM (1998) Discovery of iridium and other element anomalies near the 1908 Tunguska explosion site. Planet Space Sci 46:179–188

    Article  ADS  Google Scholar 

  • Hou QL, Kolesnikov EM, Xie LW, Zhou MF, Sun M, Kolesnikova NV (2000) Discovery of probable Tunguska Cosmic Body material: anomalies of platinum group elements and REE in peat near explosion site (1908). Planet Space Sci 48:1447–1455

    Article  ADS  Google Scholar 

  • Hou QL, Kolesnikov EM, Xie LW, Kolesnikova NV, Zhou MF, Sun M (2004) Platinum group element abundances in a peat layer associated with the Tunguska event, further evidence for a cosmic origin. Planet Space Sci 52:331–340

    Article  ADS  Google Scholar 

  • Jessberger EK, Kissel J, Fechtig H, Krueger FR (1986) On the average chemical composition of cometary dust. Comet Nucl Sample Return Mission Eur Space Agency Proc Workshop, Canterbury, pp 27–30

    Google Scholar 

  • Kolesnikov EM (1980) On some probable features of chemical composition of the Tunguska Cosmic Body (in Russian). In: Vzaimodeystviye Meteoritnogo Veshchestva s Zemley. Nauka, Novosibirsk, pp 87–102

    Google Scholar 

  • Kolesnikov EM (1982) Isotopic anomalies in H and C in peat from the Tunguska meteorite explosion area (in Russian) Doklady Akad Nauk SSSR 266:993–995

    ADS  Google Scholar 

  • Kolesnikov EM (1984) Isotopic anomalies in peat from the Tunguska meteorite explosion area (in Russian). In: Meteoritnye Issledovaniya v Sibiri. Nauka, Novosibirsk, pp 49–63

    Google Scholar 

  • Kolesnikov EM (1988) Isotopic investigations in the area of the Tunguska Catastrophe in 1908 year. Conference “Global Catastrophes in Earth History”, Abstracts, Snowbird, pp 97–98

    Google Scholar 

  • Kolesnikov EM (1989) Search for traces of Tunguska Cosmic Body dispersed material. Meteoritics 24:288

    ADS  Google Scholar 

  • Kolesnikov EM, Shestakov GI (1979) Isotopic composition of lead from peat of the area of the 1908 Tunguska explosion (in Russian). Geochimiya (8):1202–1211

    Google Scholar 

  • Kolesnikov EM, Lavrukhina AK, Fisenko AV (1973) Experimental check of hypothesis about an annihilation and thermonuclear nature of the Tunguska explosion of 1908 (in Russian). Geokhimiya (8):1115–1121

    Google Scholar 

  • Kolesnikov EM, Ljul AYu, Ivanova GM (1977) The signs of cosmochemical anomaly in the 1908 Tunguska explosion region: II. The research of chemical composition of silicate microspherules (in Russian). Astronomicheskij Vestnik 11:209–218

    ADS  Google Scholar 

  • Kolesnikov EM, Boettger T, Kolesnikova NV (1995a) Isotopic composition of carbon and hydrogen in peat from the Tunguska Cosmic Body explosion area (in Russian). Doklady Akad Nauk 343:669–672

    Google Scholar 

  • Kolesnikov EM, Kolesnikova NV, Boettger T, Junge FW, Hiller A (1995b) Elemental and isotopic anomalies in peat of the Tunguska meteorite (1908) explosion area. XIV INQUA Congress vol 34. Berlin

    Google Scholar 

  • Kolesnikov EM, Boettger T, Kolesnikova NV, Junge FW (1996) The anomalies in isotopic composition of carbon and nitrogen in peat from the Tunguska Cosmic Body explosion area of 1908 (in Russian). Doklady Akad Nauk 347:378–382

    Google Scholar 

  • Kolesnikov EM, Kolesnikova NV, Boettger T (1998a) Isotopic anomaly in peat nitrogen is a probable trace of acid rains caused by 1908 Tunguska bolide. Planet Space Sci 46:163–167

    Article  ADS  Google Scholar 

  • Kolesnikov EM, Stepanov AI, Gorid’ko EA, Kolesnikova NV (1998b) Element and isotopic anomalies in peat from the Tunguska explosion (1908) area are probably traces of cometary material. Meteoritics and Planet Sci 33:Suppl A85

    Google Scholar 

  • Kolesnikov EM, Boettger T, Kolesnikova NV (1999) Finding of probable Tunguska Cosmic Body material: isotopic anomalies of carbon and hydrogen in peat. Planet Space Sci 47:905–916

    Article  ADS  Google Scholar 

  • Kolesnikov EM, Kolesnikova NV, Stepanov AI, Gorid’ko EA, Boettger T, Hou QL (2003) Isotopic and elemental anomalies in peat from the Tunguska explosion area are probable traces of cometary material (in Russian). In: Tungusskiy zapovednik. Trudy, vol 1. Izd-vo Tomskogo universiteta, Tomsk, pp 250–266

    Google Scholar 

  • Kolesnikov EM, Longo G, Boettger T, Kolesnikova NV, Gioacchini P, Forlani L, Giampieri R, Serra R (2003) Isotopic-geochimical study of nitrogen and carbon in peat from the Tunguska Cosmic Body explosion site. Icarus 161:235–243

    Article  ADS  Google Scholar 

  • Krinov EL (1966) Giant Meteorites. Pergamon Press, Oxford, pp 125–265

    Google Scholar 

  • Kulik LA (1939) Data on Tunguska meteorite up to 1939 year (in Russian). Doklady Akad Nauk SSSR 22: 520–524

    Google Scholar 

  • Kundt W (2001) The 1908 Tunguska Catastrophe: an alternative explanation. Current Science 81: 399–407

    Google Scholar 

  • Longo G, Serra R, Cecchini S, Galli M (1994) Search for microremnants of the Tunguska Cosmic Body. Planet Space Sci 42:163–177

    Article  ADS  Google Scholar 

  • L’vov YuA (1984) Carbon in Tunguska meteorite material (in Russian). In: Meteoritnye Issledovaniya v Sibiri. Nauka, Novosibirsk, pp 83–88

    Google Scholar 

  • Mao XY, Chai CF, Ma SL, Yang ZZ, Xu DY, Sun YY, Zhang QW (1987) Determination of trace elements in Wuxi fallen ice by INAA. J Radioanal Nucl Chem, Articles 114:345–349

    Article  Google Scholar 

  • Nazarov MA, Korina MI, Barsukova LD, Kolesnikov EM, Suponeva IV, Kolesov GM (1990) Material traces of the Tunguska bolide (in Russian). Geokhimiya 5:627–638; or (in English) Geochemistry International 27:1–12

    Google Scholar 

  • Petrov GI, Stulov VP (1975) Motion of large bolides in the atmosphere of planets. Cosmic Res 13:525–531

    ADS  Google Scholar 

  • Plekhanov GF (1997) Results of investigations and paradoxes of the 1908 Tunguska catastrophe (in Russian). In: Tungusskiy vestnik KSE. Tomsk, pp 16–18

    Google Scholar 

  • Rasmussen KL, Clausen HB, Risbo T (1984) Nitrate in the Greenland ice sheet in the years following the 1908 Tunguska event. Icarus 58:101–108

    Article  ADS  Google Scholar 

  • Rasmussen KL, Clausen HB, Kallemeyn GW (1995) No iridium anomaly after the 1908 Tunguska impact: evidence from a Greenland ice core. Meteoritics 30:634–638

    ADS  Google Scholar 

  • Rasmussen KL, Olsen HJF, Gwozdz R, Kolesnikov EM (1999) Evidence for a very high carbon/iridium ratio in the Tunguska impactor. Meteorit Planet Sci 34:891–895

    Article  ADS  Google Scholar 

  • Rasmussen KL, Aaby B, Gwozdz, R (2000) The age of the Kaalijärv meteorite craters. Meteoritics and Planetary Science, 35:1067–1071

    Article  ADS  Google Scholar 

  • Rocchia R, Bonte P, Robin E, Angelis M, Boclet D (1990) Search for the Tunguska event relics in the Antarctic snow and new estimation of the cosmic iridium accretion rate. In: Global Catastrophes in Earth History. Boulder, Colorado, pp 189–193

    Google Scholar 

  • Rocchia R, Robin E, De Angelis M, Kolesnikov E, Kolesnikova N (1996) Search for remains of the Tunguska event. International Workshop Tunguska 96. Abstracts. Bologna, Italy, pp 7–8

    Google Scholar 

  • Serra R, Cecchini S, Galli M, Longo G (1994) Experimental hints on the fragmentation of the Tunguska Cosmic Body. Planet Space Sci 42:777–783

    Article  ADS  Google Scholar 

  • Soderblom LA, Becker TL, Bennet G, Boice DC, Britt DT, Brown RH, Buratti BJ, Isbell C, Giese B, Hare T, Hicks MD, Howington-Kraus E, Kirk RL, Lee M, Melson RM, Oberst J, Owen TC, Rayman MD, Sandel BR, Stern SA, Thomas N, Yelle RV (2002) Observations of comet 19P/Borelly by the miniature integrated camera and spectrometer aboard deep space 1. Science 296:1087–1091

    Article  ADS  Google Scholar 

  • Taylor SR and McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publications

    Google Scholar 

  • Turko RP, Toon OB, Park C, Whitten RC, Pollack JB, Noerdlinger P (1982) An analysis of the physical, chemical, optical, and historical impacts of the 1908 Tunguska meteor fall. Icarus 50:1–51

    Article  ADS  Google Scholar 

  • Vasiljev NV (1998) The Tunguska meteorite problem today. Planet Space Sci 46:129–150

    Article  ADS  Google Scholar 

  • Whipple FJ (1930) The great Siberian meteor and the waves, seismic and aerial, which it produced. Q J R Meteorol Soc 56:287–304

    Google Scholar 

  • Xie LW, Hou QL, Kolesnikov EM, Kolesnikova NV (2001) Geochemical evidence for the characteristics of the 1908 Tunguska explosion body in Siberia, Russia. Sci. China (Ser D) 44:1029–1037

    Article  Google Scholar 

  • Yeomans DK (2000) Small bodies of the Solar System. Nature 404:829–832

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolesnikov, E.M., Rasmussen, K.L., Hou, Q., Xie, L., Kolesnikova, N.V. (2007). Nature of the Tunguska Impactor Based on Peat Material from the Explosion Area. In: Bobrowsky, P.T., Rickman, H. (eds) Comet/Asteroid Impacts and Human Society. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32711-0_17

Download citation

Publish with us

Policies and ethics