Skip to main content

Frequent Ozone Depletion Resulting from Impacts of Asteroids and Comets

  • Chapter
Comet/Asteroid Impacts and Human Society

Abstract

The fossil record reveals that the evolution of life on Earth has been punctuated by a number of catastrophic events, of which one of the most devastating occurred at the end of the Cretaceous, approximately 66 million years ago. The postulate introduced in 1980 by Alvarez et al. (1980) that the collision of an approximately 10 km diameter asteroid with the Earth caused the extinction of the dinosaurs along with more than half of all plant and animal species has resulted in a greatly expanded research efforts in the area of catastrophic events (Alvarez et al. 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–1108

    Article  ADS  Google Scholar 

  • Bates DR, Nicolet M (1950) J Geophys Res 55:301

    Article  ADS  Google Scholar 

  • Brasseur G, Solomon S (1984) Aerononomy of the middle atmosphere. Reidel, Dordrecht

    Google Scholar 

  • Brasseur GP, Orlando JJ, Tyndall GS (1999) Atmospheric chemistry and global change. Oxford University Press, Oxford

    Google Scholar 

  • Chameides WL (1986) The role of lightning in the chemistry of the atmosphere. In: The Earth’s electrical environment. National Academy Press, Washington, pp 70–77

    Google Scholar 

  • Chapman CR (2004) The hazard of near-Earth asteroid impacts on Earth. Earth Planet Sci Lett 222:1–15

    Article  ADS  Google Scholar 

  • Croft SK (1982) A first-order estimate of shock heating and vaporization in oceanic impacts. Geol Soc Amer Spec Paper 190:143–152

    Google Scholar 

  • Crutzen PJ (1970) Quart J Roy Meteorol Soc 96:320

    Article  ADS  Google Scholar 

  • Crutzen PJ, Birks JW (1982) The atmosphere after a nuclear war: twilight at noon. Ambio 11:114–125

    Google Scholar 

  • Emiliani C, Kraus EB, Shoemaker EM (1981) Sudden death at the end of the Mesozoic. Earth Planet Sci Lett 55:317–334

    Article  ADS  Google Scholar 

  • Finlayson-Pitts BJ, Pitts JN, Jr (1986) Atmospheric chemistry: fundamentals and experimental techniques. Wiley, New York

    Google Scholar 

  • Finlayson-Pitts BJ, Ezell MJ, Pitts J (1989) Formation of chemically active chlorine compounds by reactions of atmospheric NaCl particles with gaseous N2O5 and ClONO2. Nature, 337:241–244

    Article  ADS  Google Scholar 

  • Foley HM, Ruderman MA (1973) Stratospheric NO production from past nuclear explosions. J Geophys Res 78:4441–4451

    Article  ADS  Google Scholar 

  • Gilmore FR (1975) J Geophys Res 80:4553

    Article  ADS  Google Scholar 

  • Hall JD, Mount, DW (1981) Prog Nucleic Acid Res Mol Biol 25:53–126

    Article  Google Scholar 

  • Haynes DR Tro NJ, George SM (1992) Condensation and evaporation of H2O on ice surfaces. J Phys Chem 96:8502–8509

    Article  ADS  Google Scholar 

  • Johnston HS (1971) Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust. Science 173:517–522

    Article  ADS  Google Scholar 

  • Johnston H, Whitten G, Birks J (1973) Effect of nuclear explosions on stratospheric nitric oxide and ozone. J Geophys Res 78:6107–6135

    Article  ADS  Google Scholar 

  • Jones EM, Kodis JW (1982) Atmospheric effects of large body impacts: the first few minutes. Geol Soc Amer Spec Paper 190:175–186

    Google Scholar 

  • Junge CE, Chagnon CW, Manson JE (1961) J Meteor 18:81

    Google Scholar 

  • Kring DA (1999) Meteor Planet Sci 34, A67–A68

    Article  ADS  Google Scholar 

  • Kring DA, Melosh HJ, Hunten DM (1995) Meteoritics 30:530

    ADS  Google Scholar 

  • Keller G (1989) Paleonoceanography 4:287–332

    Article  ADS  Google Scholar 

  • Lee TT, Yeung ES (1992) Anal Chem 64:3045–3051

    Article  Google Scholar 

  • Lewis JS, Watkins GH, Hartman H, Prinn RG (1982) Chemical consequences of major impact events on Earth. Geol Soc Amer Spec Paper 190:215–221

    Google Scholar 

  • List RJ (1984) Smithsonian meteorological tables. Smithsonian Institution Press, Washington

    Google Scholar 

  • Livingston FE, Finlayson-Pitts BJ (1991) Geophys Res Lett 18:17–20

    Article  ADS  Google Scholar 

  • Melosh HJ (1982) The mechanics of large meteoroid impacts in the Earth’s oceans. Geol Soc Amer Spec Paper 190:121–127

    Google Scholar 

  • Melosh HJ (1989) Impact cratering. Oxford University Press, New York

    Google Scholar 

  • Molina MJ, Rowland FS (1974) Nature 249:810

    Article  ADS  Google Scholar 

  • Mori T et al. (1991) Photochem Photobiol 54:225–232

    Article  Google Scholar 

  • Nachtway DF, Caldwell MM, Biggs RH, eds (1995) CIAP, monograph 5, US Department of Transportation, Impacts of Climatic Change on the Biosphere

    Google Scholar 

  • National Research Council (1975) Long term world-wide effects of multiple nuclear-weapon detonations. National Academy Press, Washington

    Google Scholar 

  • National Research Council (1985) The effects on the atmosphere of a major nuclear exchange. National Academy Press, Washington

    Google Scholar 

  • Nemtchinov IV, Svetsov VV, Kosarev IB, Golub AP, Popova OP, Shuvalov VV, Spalding RE, Jacobs C, Tagliaferri E (1997) Icarus 130:259–274

    Article  ADS  Google Scholar 

  • O’Keefe JD, Ahrens TJ (1982) The interaction of the Cretaceous/Tertiary extinction bolide with the atmosphere, ocean, and solid Earth. Geol Soc Amer Spec Pap 190:103–120

    Google Scholar 

  • O’Keefe JD, Ahrens TJ (1989) Impact production of CO2 by the Cretaceous/Tertiary extinction bolide and the resultant heating of the Earth. Nature 338:247–248

    Article  ADS  Google Scholar 

  • Pittock AB et al. (1985) Environmental consequences of nuclear war, vol I: Physical and atmospheric effects. Scientific Committee on Problems in the Environment, SCOPE 28, Wiley

    Google Scholar 

  • Pope, KO, Baines KH, Ocampo AD, Ivanov B. (1997) Energy, volatile production, and climatic effects of the Chicxulub Cretaceous/Tertiary impact. J Geophs Res 102:21645–21664.

    Article  ADS  Google Scholar 

  • Prinn RJ, Fegley JB (1987) Bolide impacts, acid rain, and biospheric traumas at the Cretaceous-Tertiary boundary. Earth Planet Sci Lett 83:1–15

    Article  ADS  Google Scholar 

  • Robertson DS, McKenna MC, Toon OB, Hope S, Lillegraven JA (2004) Survival in the first hours of the Cenozoic. GSA Bulletin 116:760–768.

    Article  Google Scholar 

  • Roble RG (2000) Geophysical Monograph 123:53–67

    Google Scholar 

  • Roble RG, Ridley EC (1994) Geophys Res Lett 21:417–420

    Article  ADS  Google Scholar 

  • Setlow RB, Carrier WL (1966) J Mol Biol 17:237–254

    Article  Google Scholar 

  • Shoemaker EM, Wolfe RF, Shoemaker CS (1990) In: Sharpton VL, Ward PD (ed) Global catastrophes in Earth history. GSA Special Paper 247, Geological Society of America, Boulder, CO, pp 155–170

    Google Scholar 

  • Timonen RS, Chu LT, Leu M, Keyser LF (1994) Heterogeneous reaction of ClONO2(g)+NaCl(s) → Cl2(g) + NaNO3(s). J Phys Chem 98:9509–9517

    Article  Google Scholar 

  • Toon OB et al. (1982) Evolution of an impact-generated dust-cloud and its effects on the atmosphere. Geol Soc Amer Spec Pap 190:187–200

    Google Scholar 

  • Toon OB, Zahnle K, Turco RP, Covey C (1994) Environmental perturbations caused by impacts. In: Gehrels T (ed) Hazards due to comets and asteroids. Univ of Arizona Press, Tucson, pp 791–826

    Google Scholar 

  • Turco RP, Toon OB, Ackerman TP, Pollack JB, Sagan C (1983) Science 222:1283–1292

    Article  ADS  Google Scholar 

  • Wani AA, D’Ambrosio SM, Alvi NK (1987) Photchem Photobiol 46: 477–482

    Article  Google Scholar 

  • Whitten RC, Borucki WJ, Turco RP (1975) Nature 257:38

    Article  ADS  Google Scholar 

  • Witkin EM (1969) Annu Rev Microbiol 23:487–514

    Article  Google Scholar 

  • Zangmeister CD, Pemberton JE (1998) In situ monitoring of the NaCl +HNO3 surface reaction: the observation of mobile surface strings. J Phys Chem 102:8950–8953

    Google Scholar 

  • Zel’dovich YB, Raizer YP (1968) In: Elements of gas dynamics and the classical theory of shock waves. Academic Press, New York, pp 101–106

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Birks, J.W., Crutzen, P.J., Roble, R.G. (2007). Frequent Ozone Depletion Resulting from Impacts of Asteroids and Comets. In: Bobrowsky, P.T., Rickman, H. (eds) Comet/Asteroid Impacts and Human Society. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32711-0_13

Download citation

Publish with us

Policies and ethics