Skip to main content

On the Convergence of Spectral Clustering on Random Samples: The Normalized Case

  • Conference paper
Learning Theory (COLT 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3120))

Included in the following conference series:

Abstract

Given a set of n randomly drawn sample points, spectral clustering in its simplest form uses the second eigenvector of the graph Laplacian matrix, constructed on the similarity graph between the sample points, to obtain a partition of the sample. We are interested in the question how spectral clustering behaves for growing sample size n. In case one uses the normalized graph Laplacian, we show that spectral clustering usually converges to an intuitively appealing limit partition of the data space. We argue that in case of the unnormalized graph Laplacian, equally strong convergence results are difficult to obtain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Belkin, M.: Problems of Learning on Manifolds. PhD thesis, University of Chicago (2003)

    Google Scholar 

  • Belkin, M., Niyogi, P.: Semi-supervised learning on Riemannian manifolds. Machine Learning (to appear), Available at http://people.cs.uchicago.edu/char126/relaxmisha

  • Bengio, Y. Vincent, P., Paiement, J.-F., Delalleau, O., Ouimet, M., Le Roux, N., Spectral clustering and kernel PCA are learning eigenfunctions. Technical Report TR 1239, University of Montreal (2003)

    Google Scholar 

  • Bhatia, R.: Matrix Analysis. Springer, New York (1997)

    Google Scholar 

  • Birman, M., Solomjak, M.: Spectral theory of self-adjoint operators in Hilbert space. Reidel Publishing Company, Dordrecht (1987)

    MATH  Google Scholar 

  • Bousquet, O., Chapelle, O., Hein, M.: Measure based regularization. In: Thrun, S., Saul, L., Scholkopf, B. (eds.) Advances in Neural Information Processing Systems 16, MIT Press, Cambridge (2004)

    Google Scholar 

  • Chatelin, F.: Spectral Approximation of Linear Operators. Academic Press, New York (1983)

    MATH  Google Scholar 

  • Chung, F.R. K.: Spectral graph theory .In: CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC, voi .92 (1997)

    Google Scholar 

  • Donath, W.E., Hoffman, A.J.: Lower bounds for the partitioning of graphs. IBM J. Res. Develop. 17, 420–425 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  • Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Math. J. 23, 298–305 (1973)

    MathSciNet  Google Scholar 

  • Guattery, S., Miller, G.L.: On the quality of spectral separators. SIAM Journal of Matrix Anal. Appl. 19(3) (1998)

    Google Scholar 

  • Hagen, L., Kahng, A.B.: New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Computer-Aided Design 11(9), 1074–1085 (1992)

    Article  Google Scholar 

  • Hartigan, J.: Consistency of single linkage for high-density clusters. JASA 76(374), 388–394 (1981)

    MATH  MathSciNet  Google Scholar 

  • Hendrickson, B., Leland, R.: An improved spectral graph partitioning algorithm for mapping parallel computations. SIAM J. on Scientific Computing 16, 452–469 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • Kannan, R., Vempala, S., Vetta, A.: On clusterings - good, bad and spectral. Technical report, Computer science Department, Yale University (2000)

    Google Scholar 

  • Kato, T.: Perturbation theory for linear operators. Springer, Berlin (1966)

    MATH  Google Scholar 

  • Koltchinskii, V.: Asymptotics of spectral projections of some random matrices approximating integral operators. Progress in Probabilty 43 (1998)

    Google Scholar 

  • Koltchinskii, V., Giné, E.: Random matrix approximation of spectra of integral operators. Bernoulli 6(1), 113–167 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Meila, M., Shi, J.: A random walks view of spectral segmentation. In: 8th International Workshop on Artificial Intelligence and Statistics (2001)

    Google Scholar 

  • Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: Dietterich, T., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14, MIT Press, Cambridge (2001)

    Google Scholar 

  • Niyogi, P., Karmarkar, N.K.: An approach to data reduction and clustering with theoretical guarantees. In: Langley, P. (ed.) Proceedings of the Seventeenth International Conference on Machine Learning, Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  • Pollard, D.: Strong consistency of k-means clustering. Annals of Statistics 9(1), 135–140 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  • Shawe-Taylor, J., Williams, C., Cristianini, N., Kandola, J.: On the eigenspectrum of the Gram matrix and its relationship to the operator eigenspectrum. In: Cesa- Bianchi, N., Numao, M., Reischuk, R. (eds.) Proceedings of the 13th International Conference on Algorithmic Learning Theory, Springer, Heidelberg (2002)

    Google Scholar 

  • Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  • Van Driessche, R., Roose, D.: An improved spectral bisection algorithm and its application to dynamic load balancing. Parallel Comput. 21(1) (1995)

    Google Scholar 

  • von Luxburg, U., Bousquet, O., Belkin, M.: On the convergence of spectral clustering on random samples: the unnormalized case. Submitted to DAGM (2004), available at http://www.kyb.tuebingen.mpg.de/~ule

  • Weidmann, J.: Linear Operators in Hilbert spaces. Springer, New York (1980)

    MATH  Google Scholar 

  • Weiss, Y.: Segmentation using eigenvectors: A unifying view. In: Proceedings of the International Conference on Computer Vision, pp. 975–982 (1999)

    Google Scholar 

  • Williams, C.K.I., Seeger, M.: The effect of the input density distribution on kernel based classifiers. In: Langley, P. (ed.) Proceedings of the 17th International Conference on Machine Learning, pp. 1159–1166. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  • Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using Gaussianfields and harmonic functions. In: Fawcett, T., Mishra, N. (eds.) Proceedings of the 20th International Conference of Machine Learning, AAAI Press, Menlo Park (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

von Luxburg, U., Bousquet, O., Belkin, M. (2004). On the Convergence of Spectral Clustering on Random Samples: The Normalized Case. In: Shawe-Taylor, J., Singer, Y. (eds) Learning Theory. COLT 2004. Lecture Notes in Computer Science(), vol 3120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27819-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27819-1_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22282-8

  • Online ISBN: 978-3-540-27819-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics