Skip to main content

Teacher and Student Joint Learning for Compact Facial Landmark Detection Network

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10704))

Included in the following conference series:

Abstract

Compact neural networks with limited memory and computation are demanding in recently popularized mobile applications. The reduction of network parameters is an important priority. In this paper, we address a compact neural network for facial landmark detection. The facial landmark detection is a frontal module that is mandatorily required for face analysis applications. We propose a new teacher and student joint learning method applicable to a compact facial landmark detection network. In the proposed learning scheme, the compact architecture of student regression network is learned jointly with the fully connected layer of the teacher regression network so that they are mimicked each other. To demonstrate the effectiveness of the proposed learning method, experiments were performed on a public database. The experimental results showed that the proposed method could reduce network parameters while maintaining comparable performance to state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao, X., Wei, Y., Wen, F., Sun, J.: Face alignment by explicit shape regression. Int. J. Comput. Vis. 107, 177–190 (2014)

    Article  MathSciNet  Google Scholar 

  2. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Underst. 61, 38–59 (1995)

    Article  Google Scholar 

  3. Cristinacce, D., Cootes, T.F.: Feature detection and tracking with constrained local models. In: BMVC, p. 3 (2006)

    Google Scholar 

  4. Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2879–2886. IEEE (2012)

    Google Scholar 

  5. Taigman, Y., Yang, M., Ranzato, M.A., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)

    Google Scholar 

  6. Asthana, A., Marks, T.K., Jones, M.J., Tieu, K.H., Rohith, M.: Fully automatic pose-invariant face recognition via 3D pose normalization. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 937–944. IEEE (2011)

    Google Scholar 

  7. Tong, Y., Wang, Y., Zhu, Z., Ji, Q.: Robust facial feature tracking under varying face pose and facial expression. Pattern Recogn. 40, 3195–3208 (2007)

    Article  MATH  Google Scholar 

  8. Asthana, A., Zafeiriou, S., Cheng, S., Pantic, M.: Robust discriminative response map fitting with constrained local models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3444–3451 (2013)

    Google Scholar 

  9. Huang, R., Zhang, S., Li, T., He, R.: Beyond face rotation: global and local perception GAN for photorealistic and identity preserving frontal view synthesis. arXiv preprint arXiv:1704.04086 (2017)

  10. Matthews, I., Baker, S.: Active appearance models revisited. Int. J. Comput. Vis. 60, 135–164 (2004)

    Article  Google Scholar 

  11. Liang, L., Xiao, R., Wen, F., Sun, J.: Face alignment via component-based discriminative search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 72–85. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88688-4_6

    Chapter  Google Scholar 

  12. Burgos-Artizzu, X.P., Perona, P., Dollár, P.: Robust face landmark estimation under occlusion. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1513–1520 (2013)

    Google Scholar 

  13. Sun, Y., Wang, X., Tang, X.: Deep convolutional network cascade for facial point detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3476–3483 (2013)

    Google Scholar 

  14. Zhang, J., Shan, S., Kan, M., Chen, X.: Coarse-to-fine auto-encoder networks (CFAN) for real-time face alignment. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 1–16. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_1

    Google Scholar 

  15. Baddar, W.J., Son, J., Kim, D.H., Kim, S.T., Ro, Y.M.: A deep facial landmarks detection with facial contour and facial components constraint. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3209–3213. IEEE (2016)

    Google Scholar 

  16. Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Learning deep representation for face alignment with auxiliary attributes. IEEE Trans. Pattern Anal. Mach. Intell. 38, 918–930 (2016)

    Article  Google Scholar 

  17. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: imagenet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_32

    Chapter  Google Scholar 

  18. Teerapittayanon, S., McDanel, B., Kung, H.: Branchynet: fast inference via early exiting from deep neural networks. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 2464–2469. IEEE (2016)

    Google Scholar 

  19. Jin, J., Dundar, A., Culurciello, E.: Flattened convolutional neural networks for feedforward acceleration. arXiv preprint arXiv:1412.5474 (2014)

  20. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv preprint arXiv:1602.07360 (2016)

  21. Wang, M., Liu, B., Foroosh, H.: Factorized convolutional neural networks. arXiv preprint arXiv:1608.04337 (2016)

  22. Wu, J., Leng, C., Wang, Y., Hu, Q., Cheng, J.: Quantized convolutional neural networks for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4820–4828 (2016)

    Google Scholar 

  23. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  24. Lee, T.K., Baddar, W.J., Kim, S.T., Ro, Y.M.: Convolution with logarithmic filter groups for efficient shallow CNN. arXiv preprint arXiv:1707.09855 (2017)

  25. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)

  26. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  27. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets: hints for thin deep nets. arXiv preprint arXiv:1412.6550 (2014)

  28. Sagonas, C., Antonakos, E., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 faces in-the-wild challenge: database and results. Image Vis. Comput. 47, 3–18 (2016)

    Article  Google Scholar 

  29. Le, V., Brandt, J., Lin, Z., Bourdev, L., Huang, T.S.: Interactive facial feature localization. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 679–692. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_49

    Chapter  Google Scholar 

  30. Belhumeur, P.N., Jacobs, D.W., Kriegman, D.J., Kumar, N.: Localizing parts of faces using a consensus of exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2930–2940 (2013)

    Article  Google Scholar 

  31. Xiong, X., De la Torre, F.: Supervised descent method and its applications to face alignment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 532–539 (2013)

    Google Scholar 

  32. Ren, S., Cao, X., Wei, Y., Sun, J.: Face alignment at 3000 fps via regressing local binary features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1685–1692 (2014)

    Google Scholar 

  33. Xu, X., Kakadiaris, I.A.: Joint head pose estimation and face alignment framework using global and local CNN features. In: Proceedings of 12th IEEE Conference on Automatic Face and Gesture Recognition, Washington, DC (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Institute for Information and communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2017-0-00111, Practical technology development of high performing emotion recognition and facial expression based authentication using deep network).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Man Ro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, H.J., Baddar, W.J., Kim, H.G., Kim, S.T., Ro, Y.M. (2018). Teacher and Student Joint Learning for Compact Facial Landmark Detection Network. In: Schoeffmann, K., et al. MultiMedia Modeling. MMM 2018. Lecture Notes in Computer Science(), vol 10704. Springer, Cham. https://doi.org/10.1007/978-3-319-73603-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73603-7_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73602-0

  • Online ISBN: 978-3-319-73603-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics