Skip to main content

Statistical Approach for Biomarker Discovery Using Label-Free LC-MS Data: An Overview

  • Chapter
  • First Online:

Part of the book series: Frontiers in Probability and the Statistical Sciences ((FROPROSTAS))

Abstract

The identification of new diagnostic, prognostic, or theranostics biomarkers is one of the main aims of clinical research. Technologies like mass spectrometry (MS) focus on the discovery of proteins as biomarkers and are commonly being used for this purpose. Mass spectrometry consists in the separation by gas of charged molecules, based on their mass-over-charge. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) first involves a separation by liquid chromatography (LC) followed by mass spectrometry in the MS and MS/MS modes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sandin, M., Chawade, A., & Levander, F. (2015). Is label-free lc-ms/ms ready for biomarker discovery? Proteomics Clinical Applications, 9, 289–294.

    Article  Google Scholar 

  2. Oberg, A. L., & Vitek, O. (2009). Statistical design of quantitative mass spectrometry-based proteomic experiments. Journal of Proteome Research, 8(5), 2144–2156.

    Article  Google Scholar 

  3. Ma, K., Vitek, O., & Nesvizhskii, A. I. (2012). A statistical model-building perspective to identification of ms/ms spectra with peptideprophet. BMC Bioinformatics, 13(Suppl 16), S1.

    Article  Google Scholar 

  4. Deutsch, E. W., Mendoza, L., Shteynberg, D., Farrah, T., Lam, H., Tasman, N., et al. (2010). A guided tour of the trans-proteomic pipeline. Proteomics, 10(6), 1150–1159.

    Article  Google Scholar 

  5. Shteynberg, D., Deutsch, E. W., Lam, H., Eng, J. K., Sun, Z., Tasman, N., et al. (2011) iProphet: Multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Molecular and Cellular Proteomics, 10, M111.007690.

    Article  Google Scholar 

  6. Nesvizhskii, A. I., Keller, A., Kolker, E., & Aebersold, R. (2003). A statistical model for identifying proteins by tandem mass spectrometry. Analytical Chemistry, 75(17), 4646–4658.

    Article  Google Scholar 

  7. Karpievitch, Y., Dabney, A., & Smith, R. (2012). Normalization and missing value imputation for label-free lc-ms analysis. BMC Bioinformatics, 13(Suppl 16), S5.

    Article  Google Scholar 

  8. Lai, X., Wang, L., Tang, H., & Witzmann, F. A. (2011). A novel alignment method and multiple filters for exclusion of unqualified peptides to enhance label-free quantification using peptide intensity in lc-ms/ms. Journal of Proteome Research, 10(10), 4799–4812.

    Article  Google Scholar 

  9. Lange, E., Tautenhahn, R., Neumann, S., & Gröpl, C. (2008). Critical assessment of alignment procedures for lc-ms proteomics and metabolomics measurements. BMC Bioinformatics, 9, 375.

    Article  Google Scholar 

  10. Smith, R., Ventura, D., & Prince, J. T. (2015). Lc-ms alignment in theory and practice: A comprehensive algorithmic review. Briefings in Bioinformatics, 16(1), 104–117.

    Article  Google Scholar 

  11. Monroe, M. E., Shaw, J. L., Daly, D. S., Adkins, J. N., & Smith, R. D. (2008). Masic: A software program for fast quantitation and flexible visualization of chromatographic profiles from detected lc-ms(/ms) features. Computational Biology and Chemistry, 32(3), 215–217.

    Article  Google Scholar 

  12. Valot, B., Langella, O., Nano, E., & Zivy, M. (2011). Masschroq: A versatile tool for mass spectrometry quantification. Proteomics, 11(17), 3572–3577.

    Article  Google Scholar 

  13. Polpitiya, A. D., Qian, W.-J., & Jaitly, N. (2008). Dante: A statistical tool for quantitative analysis of - omics data. Bioinformatics, 24, 1556–1558.

    Article  Google Scholar 

  14. Clough, T., Key, M., Ott, I., Ragg, S., Schadow, G., & Vitek, O. (2009). Protein quantification in label-free lc-ms experiments. Journal of Proteome Research, 8(11), 5275–5284.

    Article  Google Scholar 

  15. Choi, M., Chang, C.-Y., & Vitek, O. (2014). MSstats: Protein Significance Analysis in DDA, SRM and DIA for Label-free or Label-based Proteomics Experiments. R package version 2.4.0.

    Google Scholar 

  16. Matzke, M., Brown, J. N., Gritsenko, M. A., Metz, T. O., Pounds, J. G., Rodland, K. D., et al. (2013). A comparative analysis of computational approaches to relative protein quantification using peptide peak intensities in label-free lc-ms proteomics experiments. Proteomics, 13(3–4), 493–503.

    Article  Google Scholar 

  17. Callister, S. J., Barry, R. C., Adkins, J. N., Johnson, E. T., Qian, W.-J., Webb-Robertson, B.-J.M., et al. (2006) Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. Journal of Proteome Research, 5(2), 277–286.

    Article  Google Scholar 

  18. Bolstad, B. M., Irizarry, R. A., Astrand, M., & Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19(2), 185–193.

    Article  Google Scholar 

  19. Karpievitch, Y. V., Taverner, T., Adkins, J. N., Callister, S. J., Anderson, G. A., Smith, R. D., et al. (2009) Normalization of peak intensities in bottom-up ms-based proteomics using singular value decomposition. Bioinformatics, 25(19), 2573–2580.

    Article  Google Scholar 

  20. Karpievitch, Y. V., Nikolic, S. B., Wilson, R., Sharman, J. E., & Edwards, L. M. (2014) Metabolomics data normalization with eigenms. PLoS One, 9(12), e116221.

    Article  Google Scholar 

  21. Leek, J. T., & Storey, J. D. (2007). Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet, 3(9), e161.

    Article  Google Scholar 

  22. Chawade, A., Alexandersson, E., & Levander, F. (2014). Normalyzer: A tool for rapid evaluation of normalization methods for omics data sets. Journal of Proteome Research, 13(6), 3114–3120.

    Article  Google Scholar 

  23. Lai, X., Wang, L., & Witzmann, F.A. (2013). Issues and applications in label-free quantitative mass spectrometry. International Journal of Proteomics, 2013, Article ID 756039.

    Google Scholar 

  24. Chawade, A., Sandin, M., Teleman, J. N., Malmströ, J., & Levander, F. (2015). Data processing has major impact on the outcome of quantitative label-free lc-ms analysis. Journal of Proteome Research, 14(2), 676–687.

    Article  Google Scholar 

  25. Zou, H., Hastie, T., & Tibshirani, R. (2004). Sparse principal component analysis. Journal of Computational and Graphical Statistics, 15, 2006.

    MathSciNet  Google Scholar 

  26. Benjamini, Y., & Hochberg, Y. (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57(1), 289–300.

    MathSciNet  MATH  Google Scholar 

  27. Wold, H. (2005). In S. Kots & N.L. Johnson (Eds.), Partial least squares. New York: Wiley.

    Google Scholar 

  28. Boulesteix, A.-L., & Strimmer, K. (2007). Partial least squares: A versatile tool for the analysis of high-dimensional genomic data. Briefings in Bioinformatics, 8(1), 32–44.

    Article  Google Scholar 

  29. Tibshirani, R. (1996). Regression shrinkage, selection via the lasso. Journal of the Royal Statistical Society, Series B, 58, 267–288.

    MathSciNet  MATH  Google Scholar 

  30. Hoerl, A., & Kennard, W. (1970). Ridge regression: Applications to nonorthogonal problems. Technometrics, 12(1), 69–82.

    Article  MathSciNet  MATH  Google Scholar 

  31. Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 67(2), 301–320.

    Article  MathSciNet  MATH  Google Scholar 

  32. Truntzer, C., Mostacci, E., Jeannin, A., Petit, J. M., Ducoroy, P., & Cardot, H. (2014). Comparison of classification methods that combine clinical data and high-dimensional mass spectrometry data. BMC Bioinformatics, 15(385), 1–12.

    Google Scholar 

  33. Chun, H., & Keles, S. (2010). Sparse partial least squares regression for simultaneous dimension reduction and variable selection. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 72, 3–25.

    Article  MathSciNet  Google Scholar 

  34. Clough, T., Thaminy, S., Ragg, S., Aebersold, R., & Vitek, O. (2012). Statistical protein quantification and significance analysis in label-free lc-ms experiments with complex designs. BMC Bioinformatics, 13(Suppl 16), S6.

    Article  Google Scholar 

  35. Truntzer, C., Maucort-Boulch, D., & Roy, P. (2013). Impact of the selection mechanism in the identification and validation of new “omic” biomarkers. Journal of Proteomics and Bioinformatics, 6(8), 164–170.

    Article  Google Scholar 

  36. Lopes, C. T., Franz, M., Kazi, F., Donaldson, S. L., Morris, Q., & Bader, G. D. (2010) Cytoscape web: an interactive web-based network browser. Bioinformatics, 26(18), 2347–2348.

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank the members of the CLIPP Platform (University of Burgundy) for their contribution, and most particularly Géraldine Lucchi and Delphine Pecqueur, who read the article thoroughly. We also wish to thank the “Centre de Langues” (University of Burgundy) for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Truntzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Truntzer, C., Ducoroy, P. (2017). Statistical Approach for Biomarker Discovery Using Label-Free LC-MS Data: An Overview. In: Datta, S., Mertens, B. (eds) Statistical Analysis of Proteomics, Metabolomics, and Lipidomics Data Using Mass Spectrometry. Frontiers in Probability and the Statistical Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-45809-0_10

Download citation

Publish with us

Policies and ethics