Skip to main content

Abstract

The highest performing abrasive materials are classified as either superhard or ultra-hard, based on their measured hardness. Synthetic diamond, in its various formats, is the only ultra-hard material currently used for industrial applications. The largest current application area for synthetic diamond is still in the abrasives markets which are expanding as new, ‘difficult-to-machine’ materials (such as CFC and MMC materials) become more widely used. The advent of CVD diamond technology has opened up a vast and diverse range of new applications beyond machining and wear parts. It is the unique combination of extreme properties available in diamond, beyond its exceptional hardness, that allows these applications to be realised, and CVD diamond is currently used in submarines (for sensors) to satellites (for windows and heat spreaders) and everywhere in between.

Cubic boron nitride (cBN), in its various formats, is a truly superhard material which currently compliments diamond in abrasive markets due to its ability to very effectively precision machine ferrous-based materials (unlike diamond). Currently, cBN and PCBN are only commercially produced by HPHT techniques for abrasive applications; however, it is likely that in the near future, CVD techniques to produce pure cBN layers and large monocrystals will be available. If this is the case, then cBN would find new applications beyond its use as an abrasive, such as in electronics and optical markets.

This chapter not only describes the major current applications for diamond and cBN but also gives details about potential novel and exciting industrial applications of the future, based around the unique combination of extreme properties available in diamond and cBN, beyond simply their exceptional hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altman D, Tyhach M, McClymonds J, Kim S, Graham S, Cho J, Goodson K, Francis D, Faili F, Ejeckam F, Bernstein S (2014) Analysis and characterization of thermal transport in GaN HEMTs on diamond substrates. Submitted to I-THERM 2014 conference in Orlando

    Google Scholar 

  • Andersson J, Hollman P, Jacobson S (1999) Abrasive technology: current development and applications I: the third international conference on abrasive technology: (ABTEC’99), Brisbane, 22–24 Nov 1999, pp 39–46

    Google Scholar 

  • Bifano TG et al (1991) Ductile-regime grinding: a new technology for machining brittle materials. J Eng Ind Trans ASME 113(2):184–189

    Article  Google Scholar 

  • Carlomagno GM, Brebbia CA (2011) Computational methods and experimental measurements XV. WIT Press, Southampton

    Google Scholar 

  • Dubrovinskaia N et al (2006) High-pressure/high-temperature synthesis and characterization of boron-doped diamond. Z Naturforsch B 61:1561–1565

    Article  Google Scholar 

  • Dumka DC, Chou TM, Francis D, Faili F, Ejeckam F (2013) AlGaN/GaN HEMTs on diamond substrate with over 7 W/mm output power density at 10GHz. Accepted to IET electronics letters (Issue #20, 2013)

    Google Scholar 

  • El Khakani MA, Chaker M (1993) Physical properties of the x-ray membrane materials. J Vac Sci Technol B 11(6):2930–2937

    Article  Google Scholar 

  • Engler M (2007) Hexagonal boron nitride (hBN)—Applications from metallurgy to cosmetics

    Google Scholar 

  • Granger MC, Xu J, Strojek JW, Swain GM (1999) Polycrystalline diamond electrodes: basic properties and applications as amperometric detectors in flow injection analysis and liquid chromatography. Anal Chim Acta 397:145

    Article  Google Scholar 

  • Haines J, Leger JM, Bocquillon G (2001) Synthesis and design of superhard materials. Annu Rev Mater Res 31:1–23

    Article  Google Scholar 

  • Hall HT (1960) Ultra-high pressure apparatus. Rev Sci Instr 31:125

    Article  Google Scholar 

  • Ioffe Database (2014) BN—boron nitride. Sankt Peterburg: FTI im. A. F. Ioffe, RAN

    Google Scholar 

  • Isberg J, Hammersberg J, Johansson E, Wikström T, Twitchen DJ, Whitehead AJ, Coe SE, Scarsbrook GA (2002) High carrier mobility in single-crystal plasma-deposited diamond. Science 297(5587):1670–2

    Article  Google Scholar 

  • Jochen G, Schwetz KA (2005) Boron carbide, boron nitride, and metal borides, Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim

    Google Scholar 

  • Klages CP (2000) Chemical vapour deposition of diamond films. In: Riedel R (ed) Handbook of ceramic hard materials. Wiley, Weinheim, pp 390–419

    Chapter  Google Scholar 

  • Koppang MD, Witek M, Blau J, Swain GM (1999) Electrochemical oxidation of polyamines at diamond thin-film electrodes. Anal Chem 71:1188

    Article  Google Scholar 

  • Kubota Y et al (2007) Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 317(5840):932–4

    Article  Google Scholar 

  • Leichtfried G et al (2002) 13.5 Properties of diamond and cubic boron nitride. In: Beiss P et al (eds) Landolt-Börnstein – Group VIII advanced materials and technologies, vol 2A2, Powder metallurgy data. Refractory, hard and intermetallic materials. Springer, Berlin, pp 118–139. doi:10.1007/b83029. ISBN 978-3-540-42961-6

    Google Scholar 

  • Lilian C, Ronald W, Mikhail L (2014) Atom-like crystal defects: From quantum computers to biological sensors. Phys Today 67(10):38–43

    Google Scholar 

  • Maletinsky P et al (2012) A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat Nanotechnol 7:320–324

    Article  Google Scholar 

  • Mollart Tim P, Wort Christopher JH, Pickles Charles SJ, McClymont Mark R, Perkins Neil , Lewis Keith L (2001) In: Proceedings of SPIE 4375, Window and Dome technologies and materials VII, 180, 7 Sept 2001

    Google Scholar 

  • Nebel CE, Ristein J (eds) (2004) Thin film diamond II, semiconductors and semimetals, vol 77. Elsevier, London, p 121

    Book  Google Scholar 

  • Németh P, Garvie LAJ, Aoki T, Dubrovinskaia N, Dubrovinsky L, Buseck PR (2014) Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material. Nat Commun 5 Article 5447, 1–5

    Google Scholar 

  • Pan Z et al (2009) Harder than diamond: superior indentation strength of wurtzite BN and lonsdaleite. Phys Rev Lett 102(5):055503

    Article  Google Scholar 

  • Pomeroy J, Bernardoni M, Sarua A, Manoi A, Dumka DC, Fanning DM, Kuball M (2013) Achieving the best thermal performance for GaN-on-diamond. In: 35th IEEE compound semiconductor IC symposium (CSICS) 13–16 Oct 2013, Monterey, Section H.4

    Google Scholar 

  • Pope et al (2006) Prosthetic hip joint having polycrystalline diamond articulation surfaces and at least one solid polycrystalline diamond compact. Application number: 20080195220 Filed: 16 May 2006

    Google Scholar 

  • Sage L et al (2013) Optical magnetic imaging of living cells. Nature 496:486–489

    Article  Google Scholar 

  • Silberberg MS (2009) Chemistry: the molecular nature of matter and change, 5th edn. McGraw-Hill, New York, p 483. ISBN 0073048593

    Google Scholar 

  • Solozhenko VL, Andrault D, Fiquet G, Mezouar M, Rubie DC (2001) Synthesis of superhard cubic BC2N. Appl Phys Lett 78(10):1385

    Article  Google Scholar 

  • Soma T et al (1974) Characterization of wurtzite type boron nitride synthesized by shock compression. Mater Res Bull 9(6):755

    Article  Google Scholar 

  • Stoupin S, Terentyev SA, Blank VD, Shvyd’ko Yu V, Goetze K, Assoufid L et al (2014) All-diamond optical assemblies for a beam-multiplexing X-ray monochromator at the Linac Coherent Light Source. J Appl Crystallogr 47(Pt 4):1329–1336

    Article  Google Scholar 

  • Susmann R et al (2000) In: Riedel R (ed) Handbook of ceramic hard materials. Wiley, Weinheim

    Google Scholar 

  • Taniguchi T et al (2002) Ultraviolet light emission from self-organized p–n domains in cubic boron nitride bulk single crystals grown under high pressure. Appl Phys Lett 81(22):4145

    Article  Google Scholar 

  • Tian Y et al (2013) Ultrahard nanotwinned cubic boron nitride. Nature 493(7432):385–8

    Article  Google Scholar 

  • Todd RH, Allen DK, Alting L (1994) Manufacturing processes reference guide. Industrial Press Inc., New York, pp 43–48

    Google Scholar 

  • Vel L et al (1991) Cubic boron nitride: synthesis, physicochemical properties and applications. Mater Sci Eng: B 10(2):149

    Article  Google Scholar 

  • Venkatachalam S, Li X, Fergani O, Yang JG, Liang SY (2013) Crystallographic effects on microscale machining of polycrystalline brittle materials. ASME J Micro Nano Manuf 1:041001

    Article  Google Scholar 

  • Venkatachalam S, Li X, Fergani O, Yang JG, Liang SY (2015) Microstructure effects on cutting forces and flow stress in ultra-precision machining of polycrystalline brittle materials. ASME J Manuf Sci Eng 137(2):021020

    Article  Google Scholar 

  • Wentorf RH, Devries RC, Bundy FP (1980) Sintered superhard materials. Science 208(4446):873–80

    Article  Google Scholar 

  • Wort CJH, Balmer RS (2008) Diamond as an electronic material. Mater Today 11(1–2):22–28

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher John Howard Wort .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wort, C.J.H. (2016). Applications for Superhard and Ultra-Hard Materials. In: Kanyanta, V. (eds) Microstructure-Property Correlations for Hard, Superhard, and Ultrahard Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-29291-5_2

Download citation

Publish with us

Policies and ethics