Skip to main content

Computational Analysis of Musical Form

  • Chapter
  • First Online:
Computational Music Analysis

Abstract

Can a computer understand musical forms? Musical forms describe how a piece of music is structured. They explain how the sections work together through repetition, contrast, and variation: repetition brings unity, and variation brings interest. Learning how to hear, to analyse, to play, or even to write music in various forms is part of music education. In this chapter, we briefly review some theories of musical form, and discuss the challenges of computational analysis of musical form. We discuss two sets of problems, segmentation and form analysis. We present studies in music information retrieval (MIR) related to both problems. Thinking about codification and automatic analysis of musical forms will help the development of better MIR algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdallah, S., Noland, K., and Sandler, M. (2005). Theory and evaluation of a Bayesian music structure extractor. In Proceedings of the 6th International Conference on Music Information Retrieval (ISMIR 2005), pages 420-425, London, UK.

    Google Scholar 

  • Bimbot, F., Deruty, E., Sargent, G., and Vincent, E. (2012). Semiotic structure labeling of music pieces: Concepts, methods and annotation conventions. In Proceedings of the 13th International Society for Music Information Retrieval Conference (ISMIR 2012), pages 235-240, Porto, Portugal.

    Google Scholar 

  • Bimbot, F., Sargent, G., Deruty, E., Guichaoua, C., and Vincent, E. (2014). Semiotic description of music structure: an introduction to the quaero/metiss structural annotations. In Proceedings of the AES 53rd International Conference on Semantic Audio, pages P1-1, London, UK.

    Google Scholar 

  • Browles, L. (2005). Creating a tool to analyse contrapuntal music. Bachelor Dissertation, University of Bristol, UK.

    Google Scholar 

  • Bruhn, S. (1993). J. S. Bach’s Well-Tempered Clavier. In-Depth Analysis and Interpretation. Mainer International.

    Google Scholar 

  • Cambouropoulos, E. (2001). The local boundary detection model (LBDM) and its application in the study of expressive timing. In Proceedings of the International Computer Music Conference (ICMC 2001), La Habana, Cuba.

    Google Scholar 

  • Cambouropoulos, E. (2006). Musical parallelism and melodic segmentation. Music Perception, 23(3):249-268.

    Google Scholar 

  • Cambouropoulos, E., Crochemore, M., Iliopoulos, C. S., Mohamed, M., and Sagot, M.-F. (2005). A pattern extraction algorithm for abstract melodic representations that allow partial overlapping of intervallic categories. In Proceedings of the 6th International Conference on Music Information Retrieval (ISMIR 2005), pages 167-174, London, UK.

    Google Scholar 

  • Caplin, W. E. (2000). Classical Form: A Theory of Formal Functions for the Instrumental Music of Haydn, Mozart, and Beethoven. Oxford University Press.

    Google Scholar 

  • Caplin, W. E., Hepokoski, J., and Webster, J. (2009). Musical Form, Forms & Formenlehre—Three Methodological Reflections. Leuven University Press.

    Google Scholar 

  • Chai, W. (2006). Semantic segmentation and summarization of music: Methods based on tonality and recurrent structure. IEEE Signal Processing Magazine, 23(2):124-132.

    Google Scholar 

  • Charlier, C. (2009). Pour une lecture alternative du Clavier Bien Tempéré. Jacquart.

    Google Scholar 

  • Chen, H.-C., Lin, C.-H., and Chen, A. L. P. (2004). Music segmentation by rhythmic features and melodic shapes. In IEEE International Conference on Multimedia and Expo (ICME2004), pages 1643-1646.

    Google Scholar 

  • Cook, N. (1987). A Guide to Musical Analysis. Oxford University Press.

    Google Scholar 

  • Czerny, C. (1848). School of Practical Composition. R. Cocks & Co.

    Google Scholar 

  • Dannenberg, R. B. and Goto, M. (2009). Music structure analysis from acoustic signals. In Havelock, D., Kuwano, S., and Vorländer, M., editors, Handbook of Signal Processing in Acoustics, pages 305-331. Springer.

    Google Scholar 

  • Dannenberg, R. B. and Hu, N. (2002). Pattern discovery techniques for music audio. In Proceedings of the 3rd International Conference on Music Information Retrieval (ISMIR 2002), pages 63-70, Paris, France.

    Google Scholar 

  • David, L., Giraud, M., Groult, R., Louboutin, C., and Levé, F. (2014). Vers une analyse automatique des formes sonates. In Journées d’Informatique Musicale (JIM 2014).

    Google Scholar 

  • Ewert, S., Müller, M., and Grosche, P. (2009). High resolution audio synchronization using chroma onset features. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2009), pages 1869-1872.

    Google Scholar 

  • Farbood, M. (2010). A global model of musical tension. In Proceedings of the 11th International Conference on Music Perception and Cognition (ICMPC11).

    Google Scholar 

  • Foote, J. (1999). Visualizing music and audio using self-similarity. In Proceedings of the 7th ACM International Conference on Multimedia (MM99), pages 77-80, Orlando, FL.

    Google Scholar 

  • Ghias, A., Logan, J., Chamberlin, D., and Smith, B. C. (1995). Query by humming: Musical information retrieval in an audio database. In Proceedings ofthe 3rd ACM International Conference on Multimedia, pages 231-236, San Francisco, CA.

    Google Scholar 

  • Giraud, M., Groult, R., Leguy, E., and Levé, F. (2015). Computational fugue analysis. Computer Music Journal, 39(2):77-96.

    Google Scholar 

  • Giraud, M., Groult, R., and Levé, F. (2012). Detecting episodes with harmonic sequences for fugue analysis. In Proceedings of the 13 th International Society for Music Information Retrieval Conference (ISMIR 2012), Porto, Portugal.

    Google Scholar 

  • Goto, M. (2004). Development of the RWC music database. In International Congress on Acoustics (ICA 2004), pages I-553-556.

    Google Scholar 

  • Goto, M. (2006). AIST annotation for the RWC music database. In Proceedings of the 7th International Conference on Music Information Retrieval (ISMIR 2006), pages 359-360, Victoria, Canada.

    Google Scholar 

  • Hamanaka, M. and Tojo, S. (2009). Interactive GTTM analyzer. In Proceedings of the 10th International Society for Music Information Retrieval Conference (ISMIR 2009), pages 291-296, Kobe, Japan.

    Google Scholar 

  • Hepokoski, J. and Darcy, W. (2006). Elements of Sonata Theory: Norms, Types, and Deformations in the Late-Eighteenth-Century Sonata. Oxford University Press.

    Google Scholar 

  • Hirata, K. and Matsuda, S. (2002). Interactive music summarization based on GTTM. In Proceedings of the 3rd International Conference on Music Information Retrieval (ISMIR 2002), Paris, France.

    Google Scholar 

  • Hsu, J. L., Liu, C. C., and Chen, A. (1998). Efficient repeating pattern finding in music databases. In Proceedings of the 7th International Conference on Information and Knowledge Management (CIKM 1998), pages 281-288, Bethesda, MD.

    Google Scholar 

  • Jiang, N. and Müller, M. (2013). Automated methods for analyzing music recordings in sonata form. In Proceedings of the 14th International Society for Music Information Retrieval Conference (ISMIR 2013), Curitiba, Brazil.

    Google Scholar 

  • Keller, H. (1965). Das Wohltemperierte Klavier von Johann Sebastian Bach. Bärenreiter.

    Google Scholar 

  • Kirlin, P. B. and Jensen, D. D. (2011). Probabilistic modeling of hierarchical music analysis. In Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR 2011), pages 393-398, Miami, FL.

    Google Scholar 

  • Klapuri, A. (2011). Pattern induction and matching in music signals. In Ystad, S., Aramaki, M., Kronland-Martinet, R., and Jensen, K., editors, Exploring Music Contents: 7th International Symposium, CMMR 2010, Malaga, Spain, June 21-24, 2010. Revised Papers, volume 6684 of Lecture Notes in Computer Science, pages 188-204. Springer.

    Google Scholar 

  • LaRue, J. (1970). Guidelines for Style Analysis. Harmonie Park Press.

    Google Scholar 

  • Lemstrom, K. and Laine, P. (1998). Musical information retrieval using musical parameters. In Proceedings of the International Computer Music Conference (ICMC1998), pages 341-348, Ann Arbor, MI.

    Google Scholar 

  • Lerdahl, F. and Jackendoff, R. S. (1983). A Generative Theory of Tonal Music. MIT Press.

    Google Scholar 

  • Lerdahl, F. and Krumhansl, C. L. (2007). Modeling tonal tension. Music Perception, 24(4):329-366.

    Google Scholar 

  • Levy, M., Noland, K., and Sandler, M. (2007). A comparison of timbral and harmonic music segmentation algorithms. In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2007), pages 1433-1436, Honolulu, HI.

    Google Scholar 

  • Lukashevich, H. M. (2008). Towards quantitative measures of evaluating song segmentation. In Proceedings of the 9th International Conference on Music Information Retrieval (ISMIR 2008), pages 375-380, Philadelphia, PA.

    Google Scholar 

  • Maddage, N., Li, H., and Kankanhalli, M. (2009). A survey of music structure analysis techniques for music applications. In Grgic, M., Delac, K., and Ghanbari, M., editors, Recent Advances in Multimedia Signal Processing and Communications, volume 231 of Studies in Computational Intelligence, pages 551-577. Springer.

    Google Scholar 

  • Marsden, A. (2010). Schenkerian analysis by computer. Journal of New Music Research, 39(3):269-289.

    Google Scholar 

  • Marx, A. B. (1837-1847). Die Lehre von der musikalischen Komposition, praktisch theoretisch. Breitkopf und Härtel.

    Google Scholar 

  • Mauch, M., Cannam, C., Davies, M., Dixon, S., Harte, C., Kolozali, S., Tidhar, D., and Sandler, M. (2010). OMRAS2 metadata project 2009. In Proceedings of the 11th International Society for Music Information Retrieval Conference (ISMIR 2010), Utrecht, The Netherlands.

    Google Scholar 

  • Mongeau, M. and Sankoff, D. (1990). Comparison of musical sequences. Computers and the Humanities, 24(3):161-175.

    Google Scholar 

  • Muellensiefen, D., Pearce, M., and Wiggins, G. (2008). A comparison of statistical and rule-based models of melodic segmentation. In Proceedings of the 9th International Conference on Music Information Retrieval (ISMIR 2008), pages 89-94, Philadelphia, PA.

    Google Scholar 

  • Nattiez, J.-J. (1987). Musicologie générale et sémiologie. Christian Bourgeois.

    Google Scholar 

  • Paulus, J. and Klapuri, A. (2008). Music structure analysis using a probabilistic fitness measure and an integrated musicological model. In International Conference on Music Information Retrieval (ISMIR 2008), pages 369-374.

    Google Scholar 

  • Paulus, J., Müller, M., and Klapuri, A. (2010). Audio-based music structure analysis. In Proceedings of the 11th International Society for Music Information Retrieval Conference (ISMIR 2010), pages 625-636, Utrecht, The Netherlands.

    Google Scholar 

  • Peeters, G. (2007). Sequence representation of music structure using higher-order similarity matrix and maximum-likelihood approach. In Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR 2007), Vienna, Austria.

    Google Scholar 

  • Peeters, G. and Deruty, E. (2009). Is music structure annotation multi-dimensional? A proposal for robust local music annotation. In International Workshop on Learning the Semantics ofAudio Signals, pages 75-90.

    Google Scholar 

  • Prout, E. (1910). Analysis of J. S. Bach’s Forty-Eight Fugues (Das Wohltemperirte Clavier). E. Ashdown.

    Google Scholar 

  • Rafael, B. and Oertl, S. M. (2010). MTSSM - A framework for multi-track seg-mentation of symbolic music. In World Academy of Science, Engineering and Technology Conference, Turkey.

    Google Scholar 

  • Rafailidis, D., Nanopoulos, A., Manolopoulos, Y., and Cambouropoulos, E. (2008). Detection of stream segments in symbolic musical data. In Proceedings of the 9th International Conference on Music Information Retrieval (ISMIR 2008), Philadel-phia, PA.

    Google Scholar 

  • Ratner, L. (1980). Classical Music: Expression, Form, and Style. Schirmer.

    Google Scholar 

  • Ratz, E. (1973). Einführung in die musikalische Formenlehre. Universal Edition. Second edition.

    Google Scholar 

  • Reicha, A. (1824). Traité de haute composition musicale. A. Diabelli.

    Google Scholar 

  • Rodríguez-López, M. E., Volk, A., and Bountouridis, D. (2014). Multi-strategy segmentation of melodies. In Proceedings of the 15th International Society for Music Information Retrieval Conference (ISMIR 2014), pages 207-212, Taipei, Taiwan.

    Google Scholar 

  • Rosen, C. (1980). Sonata Forms. W. W. Norton.

    Google Scholar 

  • Sargent, G., Bimbot, F., and Vincent, E. (2011). A regularity-constrained Viterbi algorithm and its application to the structural segmentation of songs. In Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR 2011), Miami, FL.

    Google Scholar 

  • Schenker, H. (1935). Der freie Satz. Universal Edition.

    Google Scholar 

  • Schoenberg, A. (1967). Fundamentals of Musical Composition. Faber & Faber.

    Google Scholar 

  • Sidorov, K., Jones, A., and Marshall, D. (2014). Music analysis as a smallest grammar problem. In Proceedings of the 15th International Society for Music Information Retrieval Conference (ISMIR 2014), pages 301-3016, Taipei, Taiwan.

    Google Scholar 

  • Smith, J. B. L., Burgoyne, J. A., Fujinaga, I., De Roure, D., and Downie, J. S. (2011). Design and creation of a large-scale database of structural annotations. In Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR 2011), Miami, FL.

    Google Scholar 

  • Smith, J. B. L. and Chew, E. (2013). A meta-analysis of the MIREX structural segmentation task. In Proceedings of the 14th International Society for Music Information Retrieval Conference (ISMIR 2013), pages 251-6, Curitiba, Brazil.

    Google Scholar 

  • Tovey, D. F., editor (1924). Forty-Eight Preludes and Fugues by J. S. Bach. Associated Board of the Royal Schools of Music.

    Google Scholar 

  • Weng, P.-H. and Chen, A. L. P. (2005). Automatic musical form analysis. In Proceedings of the International Conference on Digital Archive Technologies (ICDAT 2005), Taipei, Taiwan.

    Google Scholar 

  • Wiering, F., Nooijer, J. D., Volk, A., and Tabachneck-Schijf, H. J. M. (2009). Cognition-based segmentation for music information retrieval systems. Journal of New Music Research, 38(2):139-154.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Giraud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Giraud, M., Groult, R., Levé, F. (2016). Computational Analysis of Musical Form. In: Meredith, D. (eds) Computational Music Analysis. Springer, Cham. https://doi.org/10.1007/978-3-319-25931-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25931-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25929-1

  • Online ISBN: 978-3-319-25931-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics