Skip to main content

microRNAs in Mitochondria: An Unexplored Niche

  • Chapter
microRNA: Basic Science

Abstract

Mitochondria are pivotal organelles involved in the regulation of a myriad of crucial biological processes, including cell survival and cell death, rendering mitochondrial dysfunction a relevant step in numerous pathophysiological processes. MicroRNAs (miRNAs) are endogenous small noncoding RNAs that add a new layer of complexity to the control of gene expression. miRNAs function as master regulators and fine-tuners of gene expression, primarily via posttranscriptional mechanisms, and are increasingly demonstrated as a paramount class of endogenous molecules with relevant diagnostic, prognostic, and therapeutic applications. miRNAs and other RNA interference have recently been reported to be present in mitochondria from several species, and we are now beginning to unveil mitochondrial miRNA transport mechanisms, biological function and targets to ascertain their role in this unexplored niche. Here, we describe miRNA biogenesis and present key findings regarding miRNA localization to mitochondria, origin, putative biological function, and implications for human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148(6):1145–59. PubMed.

    Article  CAS  PubMed  Google Scholar 

  2. Mercer TR, Neph S, Dinger ME, Crawford J, Smith MA, Shearwood AM, et al. The human mitochondrial transcriptome. Cell. 2011;146(4):645–58. PubMed Pubmed Central PMCID: 3160626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tomasetti M, Neuzil J, Dong L. MicroRNAs as regulators of mitochondrial function: role in cancer suppression. Biochim Biophys Acta. 2014;1840(4):1441–53. PubMed.

    Article  CAS  PubMed  Google Scholar 

  4. Graves P, Zeng Y. Biogenesis of mammalian microRNAs: a global view. Genomics Proteomics Bioinformatics. 2012;10(5):239–45. PubMed.

    Article  CAS  PubMed  Google Scholar 

  5. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011;12(2):99–110. PubMed.

    Article  CAS  PubMed  Google Scholar 

  6. Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13(4):271–82. PubMed.

    CAS  PubMed  Google Scholar 

  7. Pereira DM, Rodrigues PM, Borralho PM, Rodrigues CM. Delivering the promise of miRNA cancer therapeutics. Drug Discov Today. 2013;18(5–6):282–9. PubMed.

    Article  CAS  PubMed  Google Scholar 

  8. Aranha MM, Santos DM, Solá S, Steer CJ, Rodrigues CM. miR-34a regulates mouse neural stem cell differentiation. PLoS One. 2011;6(8):e21396. PubMed Pubmed Central PMCID: 3153928.

    Google Scholar 

  9. Aranha MM, Santos DM, Xavier JM, Low WC, Steer CJ, Solá S, et al. Apoptosis-associated microRNAs are modulated in mouse, rat and human neural differentiation. BMC Genomics. 2010;11:514. PubMed Pubmed Central PMCID: 2997008.

    Google Scholar 

  10. Borralho PM, Kren BT, Castro RE, da Silva IB, Steer CJ, Rodrigues CM. MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells. FEBS J. 2009;276(22):6689–700. PubMed.

    Article  CAS  PubMed  Google Scholar 

  11. Borralho PM, Simões AE, Gomes SE, Lima RT, Carvalho T, Ferreira DM, et al. miR-143 overexpression impairs growth of human colon carcinoma xenografts in mice with induction of apoptosis and inhibition of proliferation. PLoS One. 2011;6(8):e23787. PubMed Pubmed Central PMCID: 3162002.

    Google Scholar 

  12. Castro RE, Ferreira DM, Afonso MB, Borralho PM, Machado MV, Cortez-Pinto H, et al. miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease. J Hepatol. 2013;58(1):119–25. PubMed.

    Article  CAS  PubMed  Google Scholar 

  13. Bandiera S, Mategot R, Girard M, Demongeot J, Henrion-Caude A. MitomiRs delineating the intracellular localization of microRNAs at mitochondria. Free Radic Biol Med. 2013;64:12–9. PubMed.

    Article  CAS  PubMed  Google Scholar 

  14. Bienertova-Vasku J, Sana J, Slaby O. The role of microRNAs in mitochondria in cancer. Cancer Lett. 2013;336(1):1–7. PubMed.

    Article  CAS  PubMed  Google Scholar 

  15. Li P, Jiao J, Gao G, Prabhakar BS. Control of mitochondrial activity by miRNAs. J Cell Biochem. 2012;113(4):1104–10. PubMed Pubmed Central PMCID: 3325319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sripada L, Tomar D, Singh R. Mitochondria: one of the destinations of miRNAs. Mitochondrion. 2012;12(6):593–9. PubMed.

    Article  CAS  PubMed  Google Scholar 

  17. Duarte FV, Palmeira CM, Rolo AP. The role of microRNAs in mitochondria: small players acting wide. Genes. 2014;5(4):865–86. PubMed Pubmed Central PMCID: 4276918.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Oberg AL, French AJ, Sarver AL, Subramanian S, Morlan BW, Riska SM, et al. miRNA expression in colon polyps provides evidence for a multihit model of colon cancer. PLoS One. 2011;6(6):e20465. PubMed Pubmed Central PMCID: 3111419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54. PubMed.

    Article  CAS  PubMed  Google Scholar 

  20. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75(5):855–62. PubMed.

    Article  CAS  PubMed  Google Scholar 

  21. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–6. PubMed.

    Article  CAS  PubMed  Google Scholar 

  22. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20. PubMed.

    Article  CAS  PubMed  Google Scholar 

  23. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105. PubMed Pubmed Central PMCID: 2612969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2): 281–97. PubMed.

    Article  CAS  PubMed  Google Scholar 

  25. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318(5858):1931–4. PubMed.

    Article  CAS  PubMed  Google Scholar 

  26. Vasudevan S. Posttranscriptional upregulation by microRNAs. Wiley Interdiscip Rev RNA. 2012;3(3):311–30. PubMed.

    Article  CAS  PubMed  Google Scholar 

  27. Ruby JG, Jan CH, Bartel DP. Intronic microRNA precursors that bypass Drosha processing. Nature. 2007;448(7149):83–6. PubMed Pubmed Central PMCID: 2475599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Havens MA, Reich AA, Duelli DM, Hastings ML. Biogenesis of mammalian microRNAs by a non-canonical processing pathway. Nucleic Acids Res. 2012;40(10):4626–40. PubMed Pubmed Central PMCID: 3378869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004;10(12):1957–66. PubMed Pubmed Central PMCID: 1370684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006;13(12):1097–101. PubMed.

    Article  CAS  PubMed  Google Scholar 

  31. Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA. 2005;11(3):241–7. PubMed Pubmed Central PMCID: 1370713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004;14(10A):1902–10. PubMed Pubmed Central PMCID: 524413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell. 2006;125(5):887–901. PubMed.

    Article  CAS  PubMed  Google Scholar 

  34. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, et al. The microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432(7014):235–40. PubMed.

    Article  CAS  PubMed  Google Scholar 

  35. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the microprocessor complex. Nature. 2004;432(7014):231–5. PubMed.

    Article  CAS  PubMed  Google Scholar 

  36. Han J, Pedersen JS, Kwon SC, Belair CD, Kim YK, Yeom KH, et al. Posttranscriptional crossregulation between Drosha and DGCR8. Cell. 2009;136(1):75–84. PubMed Pubmed Central PMCID: 2680683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 2004;10(2):185–91. PubMed Pubmed Central PMCID: 1370530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science. 2004;303(5654):95–8. PubMed.

    Article  CAS  PubMed  Google Scholar 

  39. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17(24):3011–6. PubMed Pubmed Central PMCID: 305252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409(6818):363–6. PubMed.

    Article  CAS  PubMed  Google Scholar 

  41. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005;436(7051):740–4. PubMed Pubmed Central PMCID: 2944926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee Y, Hur I, Park SY, Kim YK, Suh MR, Kim VN. The role of PACT in the RNA silencing pathway. EMBO J. 2006;25(3):522–32. PubMed Pubmed Central PMCID: 1383527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003;115(2):209–16. PubMed.

    Article  CAS  PubMed  Google Scholar 

  44. Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 2003;115(2):199–208. PubMed.

    Article  CAS  PubMed  Google Scholar 

  45. Peters L, Meister G. Argonaute proteins: mediators of RNA silencing. Mol Cell. 2007;26(5):611–23. PubMed.

    Article  CAS  PubMed  Google Scholar 

  46. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–55. PubMed Pubmed Central PMCID: 2675692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu X, Fortin K, Mourelatos Z. MicroRNAs: biogenesis and molecular functions. Brain Pathol. 2008;18(1):113–21. PubMed.

    Article  CAS  PubMed  Google Scholar 

  48. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008;36(Database issue):D154–8. PubMed Pubmed Central PMCID: 2238936.

    CAS  PubMed  Google Scholar 

  49. Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 2006;20(14):1885–98. PubMed Pubmed Central PMCID: 1522082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009;10(2):126–39. PubMed.

    Article  CAS  PubMed  Google Scholar 

  51. Bandiera S, Ruberg S, Girard M, Cagnard N, Hanein S, Chretien D, et al. Nuclear outsourcing of RNA interference components to human mitochondria. PLoS One. 2011;6(6):e20746. PubMed Pubmed Central PMCID: 3113838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Barrey E, Saint-Auret G, Bonnamy B, Damas D, Boyer O, Gidrol X. Pre-microRNA and mature microRNA in human mitochondria. PLoS One. 2011;6(5):e20220. PubMed Pubmed Central PMCID: 3102686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bian Z, Li LM, Tang R, Hou DX, Chen X, Zhang CY, et al. Identification of mouse liver mitochondria-associated miRNAs and their potential biological functions. Cell Res. 2010;20(9): 1076–8. PubMed.

    Article  PubMed  Google Scholar 

  54. Kren BT, Wong PY, Sarver A, Zhang X, Zeng Y, Steer CJ. MicroRNAs identified in highly purified liver-derived mitochondria may play a role in apoptosis. RNA Biol. 2009;6(1):65–72. PubMed Pubmed Central PMCID: 3972804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sripada L, Tomar D, Prajapati P, Singh R, Singh AK, Singh R. Systematic analysis of small RNAs associated with human mitochondria by deep sequencing: detailed analysis of mitochondrial associated miRNA. PLoS One. 2012;7(9):e44873. PubMed Pubmed Central PMCID: 3439422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Das S, Ferlito M, Kent OA, Fox-Talbot K, Wang R, Liu D, et al. Nuclear miRNA regulates the mitochondrial genome in the heart. Circ Res. 2012;110(12):1596–603. PubMed Pubmed Central PMCID: 3390752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang WX, Visavadiya NP, Pandya JD, Nelson PT, Sullivan PG, Springer JE. Mitochondria-associated microRNAs in rat hippocampus following traumatic brain injury. Exp Neurol. 2015;265:84–93. PubMed Pubmed Central PMCID: 4346439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang X, Zuo X, Yang B, Li Z, Xue Y, Zhou Y, et al. MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell. 2014;158(3):607–19. PubMed Pubmed Central PMCID: 4119298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Park CW, Zeng Y, Zhang X, Subramanian S, Steer CJ. Mature microRNAs identified in highly purified nuclei from HCT116 colon cancer cells. RNA Biol. 2010;7(5):606–14. PubMed Pubmed Central PMCID: 3073257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zisoulis DG, Kai ZS, Chang RK, Pasquinelli AE. Autoregulation of microRNA biogenesis by let-7 and Argonaute. Nature. 2012;486(7404):541–4. PubMed Pubmed Central PMCID: 3387326.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Li ZF, Liang YM, Lau PN, Shen W, Wang DK, Cheung WT, et al. Dynamic localisation of mature microRNAs in human nucleoli is influenced by exogenous genetic materials. PLoS One. 2013;8(8):e70869. PubMed Pubmed Central PMCID: 3735495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Politz JC, Hogan EM, Pederson T. MicroRNAs with a nucleolar location. RNA. 2009;15(9): 1705–15. PubMed Pubmed Central PMCID: 2743059.

    Article  CAS  PubMed  Google Scholar 

  63. Herrmann JM, Longen S, Weckbecker D, Depuydt M. Biogenesis of mitochondrial proteins. Adv Exp Med Biol. 2012;748:41–64. PubMed.

    Article  CAS  PubMed  Google Scholar 

  64. Neupert W, Herrmann JM. Translocation of proteins into mitochondria. Annu Rev Biochem. 2007;76:723–49. PubMed.

    Article  CAS  PubMed  Google Scholar 

  65. Entelis NS, Kolesnikova OA, Martin RP, Tarassov IA. RNA delivery into mitochondria. Adv Drug Deliv Rev. 2001;49(1–2):199–215. PubMed.

    Article  CAS  PubMed  Google Scholar 

  66. Entelis NS, Kolesnikova OA, Dogan S, Martin RP, Tarassov IA. 5 S rRNA and tRNA import into human mitochondria. Comparison of in vitro requirements. J Biol Chem. 2001;276(49): 45642–53. PubMed.

    Article  CAS  PubMed  Google Scholar 

  67. Alfonzo JD, Soll D. Mitochondrial tRNA import—the challenge to understand has just begun. Biol Chem. 2009;390(8):717–22. PubMed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Puranam RS, Attardi G. The RNase P associated with HeLa cell mitochondria contains an essential RNA component identical in sequence to that of the nuclear RNase P. Mol Cell Biol. 2001;21(2):548–61. PubMed Pubmed Central PMCID: 86618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Maniataki E, Mourelatos Z. Human mitochondrial tRNAMet is exported to the cytoplasm and associates with the Argonaute 2 protein. RNA. 2005;11(6):849–52. PubMed Pubmed Central PMCID: 1370769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dudek J, Rehling P, van der Laan M. Mitochondrial protein import: common principles and physiological networks. Biochim Biophys Acta. 2013;1833(2):274–85. PubMed.

    Article  CAS  PubMed  Google Scholar 

  71. Gu Z, Li J, Gao S, Gong M, Wang J, Xu H, et al. InterMitoBase: an annotated database and analysis platform of protein-protein interactions for human mitochondria. BMC Genomics. 2011;12:335. PubMed Pubmed Central PMCID: 3142533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang G, Chen HW, Oktay Y, Zhang J, Allen EL, Smith GM, et al. PNPASE regulates RNA import into mitochondria. Cell. 2010;142(3):456–67. PubMed Pubmed Central PMCID: 2921675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang G, Shimada E, Koehler CM, Teitell MA. PNPASE and RNA trafficking into mitochondria. Biochim Biophys Acta. 2012;1819(9–10):998–1007. PubMed Pubmed Central PMCID: 3267854.

    Article  CAS  PubMed  Google Scholar 

  74. Wang G, Shimada E, Zhang J, Hong JS, Smith GM, Teitell MA, et al. Correcting human mitochondrial mutations with targeted RNA import. Proc Natl Acad Sci U S A. 2012;109(13):4840–5. PubMed Pubmed Central PMCID: 3323963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wei Y, Li L, Wang D, Zhang CY, Zen K. Importin 8 regulates the transport of mature microRNAs into the cell nucleus. J Biol Chem. 2014;289(15):10270–5. PubMed Pubmed Central PMCID: 4036152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Salmanidis M, Pillman K, Goodall G, Bracken C. Direct transcriptional regulation by nuclear microRNAs. Int J Biochem Cell Biol. 2014;54:304–11. PubMed.

    Article  CAS  PubMed  Google Scholar 

  77. Meseguer S, Martinez-Zamora A, Garcia-Arumi E, Andreu AL, Armengod ME. The ROS-sensitive microRNA-9/9* controls the expression of mitochondrial tRNA-modifying enzymes and is involved in the molecular mechanism of MELAS syndrome. Hum Mol Genet. 2015;24(1): 167–84. PubMed.

    Article  PubMed  Google Scholar 

  78. Lung B, Zemann A, Madej MJ, Schuelke M, Techritz S, Ruf S, et al. Identification of small non-coding RNAs from mitochondria and chloroplasts. Nucleic Acids Res. 2006;34(14):3842–52. PubMed Pubmed Central PMCID: 1557801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Borralho PM, Steer CJ, Rodrigues CM. Isolation of mitochondria from liver and extraction of total RNA and protein: analyses of microRNA and protein expressions. Methods Mol Biol. 2015;1241:9–22. PubMed.

    Article  CAS  PubMed  Google Scholar 

  80. Das S, Bedja D, Campbell N, Dunkerly B, Chenna V, Maitra A, et al. MiR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo. PLoS One. 2014;9(5):e96820. PubMed Pubmed Central PMCID: 4014556.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ernoult-Lange M, Benard M, Kress M, Weil D. P-bodies and mitochondria: which place in RNA interference? Biochimie. 2012;94(7):1572–7. PubMed.

    Article  CAS  PubMed  Google Scholar 

  82. Huang L, Mollet S, Souquere S, Le Roy F, Ernoult-Lange M, Pierron G, et al. Mitochondria associate with P-bodies and modulate microRNA-mediated RNA interference. J Biol Chem. 2011;286(27):24219–30. PubMed Pubmed Central PMCID: 3129203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Du H, Guo L, Yan S, Sosunov AA, McKhann GM, Yan SS. Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc Natl Acad Sci U S A. 2010;107(43):18670–5. PubMed Pubmed Central PMCID: 2972922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sheng ZH. Mitochondrial trafficking and anchoring in neurons: new insight and implications. J Cell Biol. 2014;204(7):1087–98. PubMed Pubmed Central PMCID: 3971748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ahmad T, Mukherjee S, Pattnaik B, Kumar M, Singh S, Kumar M, et al. Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J. 2014;33(9):994–1010. PubMed Pubmed Central PMCID: 4193933.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Lou E, Fujisawa S, Morozov A, Barlas A, Romin Y, Dogan Y, et al. Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. PLoS One. 2012;7(3):e33093. PubMed Pubmed Central PMCID: 3302868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Spees JL, Olson SD, Whitney MJ, Prockop DJ. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci U S A. 2006;103(5):1283–8. PubMed Pubmed Central PMCID: 1345715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Diaz-Carballo D, Gustmann S, Jastrow H, Acikelli AH, Dammann P, Klein J, et al. Atypical cell populations associated with acquired resistance to cytostatics and cancer stem cell features: the role of mitochondria in nuclear encapsulation. DNA Cell Biol. 2014;33(11):749–74. PubMed Pubmed Central PMCID: 4216482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Galluzzi L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol. 2012;13(12):780–8. PubMed.

    Article  CAS  PubMed  Google Scholar 

  90. Rippo MR, Olivieri F, Monsurro V, Prattichizzo F, Albertini MC, Procopio AD. MitomiRs in human inflamm-aging: a hypothesis involving miR-181a, miR-34a and miR-146a. Exp Gerontol. 2014;56:154–63. PubMed.

    Article  CAS  PubMed  Google Scholar 

  91. Vidaurre S, Fitzpatrick C, Burzio VA, Briones M, Villota C, Villegas J, et al. Down-regulation of the antisense mitochondrial non-coding RNAs (ncRNAs) is a unique vulnerability of cancer cells and a potential target for cancer therapy. J Biol Chem. 2014;289(39):27182–98. PubMed Pubmed Central PMCID: 4175353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146(3):353–8. PubMed Pubmed Central PMCID: 3235919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yuan Y, Liu B, Xie P, Zhang MQ, Li Y, Xie Z, et al. Model-guided quantitative analysis of microRNA-mediated regulation on competing endogenous RNAs using a synthetic gene circuit. Proc Natl Acad Sci U S A. 2015;112(10):3158–63. PubMed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clifford J. Steer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Borralho, P.M., Rodrigues, C.M.P., Steer, C.J. (2015). microRNAs in Mitochondria: An Unexplored Niche. In: Santulli, G. (eds) microRNA: Basic Science. Advances in Experimental Medicine and Biology, vol 887. Springer, Cham. https://doi.org/10.1007/978-3-319-22380-3_3

Download citation

Publish with us

Policies and ethics