Skip to main content

Generation of Functional Thyroid from Embryonic Stem Cells

  • Chapter
Thyroid Diseases in Childhood
  • 950 Accesses

Abstract

Recently, embryonic stem cells (ESCs) have been intensively used for studying the development of several lineages, tissues and organs as well as their physiology. In addition, ESCs have been considered as an alternative model system for modelling congenital diseases. Because of the difficulty to study the development of the thyroid gland, in several mammalian and non-mammalian models, pluripotent stem cells have been used to generate an alternative model to highlight and uncover morphogenetic events and new genes involved in the correct thyroid organogenesis. In this chapter, I will firstly focus on how embryonic stem cells can be used to study organogenesis of different organs and, concerning thyroid field, what the different steps are that lead to the generation of functional thyroid tissue from pluripotent stem cells. I will then propose how the ESC-based tool generated by Sabine Costagliola and colleagues would be used as model to understand new insights of thyroid development, new genes and how the generation of functional thyroid tissue from pluripotent stem cells opens a new avenue in the finding of new treatments for hypothyroidism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Opitz R, Antonica F, Costagliola S (2013) New model systems to illuminate thyroid organogenesis. Part I: an update on the zebrafish toolbox. Eur Thyroid J 2:229–242

    Article  PubMed Central  PubMed  Google Scholar 

  2. Lazzaro D, Price M, de Felice M, Di Lauro R (1991) The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development 113:1093–1104

    CAS  PubMed  Google Scholar 

  3. Plachov D, Chowdhury K, Walther C, Simon D, Guenet JL, Gruss P (1990) Pax8, a murine paired box gene expressed in the developing excretory system and thyroid gland. Development 110:643–651

    CAS  PubMed  Google Scholar 

  4. De Felice M, Di Lauro R (2004) Thyroid development and its disorders: genetics and molecular mechanisms. Endocr Rev 25:722–746

    Article  PubMed  Google Scholar 

  5. Dathan N, Parlato R, Rosica A, De Felice M, Di Lauro R (2002) Distribution of the titf2/foxe1 gene product is consistent with an important role in the development of foregut endoderm, palate, and hair. Dev Dyn Off Publ Am Assoc Anatomists 224:450–456

    CAS  Google Scholar 

  6. Bogue CW, Ganea GR, Sturm E, Ianucci R, Jacobs HC (2000) Hex expression suggests a role in the development and function of organs derived from foregut endoderm. Dev Dyn Off Publ Am Assoc Anatomists 219:84–89

    CAS  Google Scholar 

  7. Thomas PQ, Brown A, Beddington RS (1998) Hex: a homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development 125:85–94

    CAS  PubMed  Google Scholar 

  8. Milenkovic M, De Deken X, Jin L, De Felice M, Di Lauro R, Dumont JE, Corvilain B, Miot F (2007) Duox expression and related H2O2 measurement in mouse thyroid: onset in embryonic development and regulation by TSH in adult. J Endocrinol 192:615–626

    Article  CAS  PubMed  Google Scholar 

  9. Meunier D, Aubin J, Jeannotte L (2003) Perturbed thyroid morphology and transient hypothyroidism symptoms in Hoxa5 mutant mice. Dev Dyn Off Publ Am Assoc Anatomists 227:367–378

    CAS  Google Scholar 

  10. Parlato R, Rosica A, Rodriguez-Mallon A, Affuso A, Postiglione MP, Arra C, Mansouri A, Kimura S, Di Lauro R, De Felice M (2004) An integrated regulatory network controlling survival and migration in thyroid organogenesis. Dev Biol 276:464–475

    Article  CAS  PubMed  Google Scholar 

  11. Kusakabe T, Kawaguchi A, Hoshi N, Kawaguchi R, Hoshi S, Kimura S (2006) Thyroid-specific enhancer-binding protein/NKX2.1 is required for the maintenance of ordered architecture and function of the differentiated thyroid. Mol Endocrinol 20:1796–1809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kimura S, Hara Y, Pineau T, Fernandez-Salguero P, Fox CH, Ward JM, Gonzalez FJ (1996) The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 10:60–69

    Article  CAS  PubMed  Google Scholar 

  13. Mansouri A, Chowdhury K, Gruss P (1998) Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet 19:87–90

    Article  CAS  PubMed  Google Scholar 

  14. Martinez Barbera JP, Clements M, Thomas P, Rodriguez T, Meloy D, Kioussis D, Beddington RS (2000) The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development 127:2433–2445

    CAS  PubMed  Google Scholar 

  15. De Felice M, Ovitt C, Biffali E, Rodriguez-Mallon A, Arra C, Anastassiadis K, Macchia PE, Mattei MG, Mariano A, Scholer H et al (1998) A mouse model for hereditary thyroid dysgenesis and cleft palate. Nat Genet 19:395–398

    Article  PubMed  Google Scholar 

  16. Christophe D (2004) The control of thyroid-specific gene expression: what exactly have we learned as yet? Mol Cell Endocrinol 223:1–4

    Article  CAS  PubMed  Google Scholar 

  17. Postiglione MP, Parlato R, Rodriguez-Mallon A, Rosica A, Mithbaokar P, Maresca M, Marians RC, Davies TF, Zannini MS, De Felice M et al (2002) Role of the thyroid-stimulating hormone receptor signaling in development and differentiation of the thyroid gland. Proc Natl Acad Sci U S A 99:15462–15467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Fagman H, Grande M, Gritli-Linde A, Nilsson M (2004) Genetic deletion of sonic hedgehog causes hemiagenesis and ectopic development of the thyroid in mouse. Am J Pathol 164:1865–1872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ohuchi H, Hori Y, Yamasaki M, Harada H, Sekine K, Kato S, Itoh N (2000) FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem Biophys Res Commun 277:643–649

    Article  CAS  PubMed  Google Scholar 

  20. Celli G, LaRochelle WJ, Mackem S, Sharp R, Merlino G (1998) Soluble dominant-negative receptor uncovers essential roles for fibroblast growth factors in multi-organ induction and patterning. EMBO J 17:1642–1655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Dimitropoulos A, Molinari L, Etter K, Torresani T, Lang-Muritano M, Jenni OG, Largo RH, Latal B (2009) Children with congenital hypothyroidism: long-term intellectual outcome after early high-dose treatment. Pediatr Res 65:242–248

    Article  CAS  PubMed  Google Scholar 

  22. Persani L (2012) Congenital hypothyroidism with gland in situ is more frequent than previously thought. Front Endocrinol 3:18

    Article  Google Scholar 

  23. Collu R, Tang J, Castagne J, Lagace G, Masson N, Huot C, Deal C, Delvin E, Faccenda E, Eidne KA et al (1997) A novel mechanism for isolated central hypothyroidism: inactivating mutations in the thyrotropin-releasing hormone receptor gene. J Clin Endocrinol Metab 82:1561–1565

    CAS  PubMed  Google Scholar 

  24. Bonomi M, Busnelli M, Beck-Peccoz P, Costanzo D, Antonica F, Dolci C, Pilotta A, Buzi F, Persani L (2009) A family with complete resistance to thyrotropin-releasing hormone. N Engl J Med 360:731–734

    Article  CAS  PubMed  Google Scholar 

  25. Grasberger H, Refetoff S (2011) Genetic causes of congenital hypothyroidism due to dyshormonogenesis. Curr Opin Pediatr 23:421–428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Wobus AM, Boheler KR (2005) Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 85:635–678

    Article  CAS  PubMed  Google Scholar 

  27. Rossant J, Tam PP (2009) Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136:701–713

    Article  CAS  PubMed  Google Scholar 

  28. Zorn AM, Wells JM (2009) Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol 25:221–251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  PubMed  Google Scholar 

  30. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Bradley A, Evans M, Kaufman MH, Robertson E (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309:255–256

    Article  CAS  PubMed  Google Scholar 

  32. D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23:1534–1541

    Article  PubMed  Google Scholar 

  33. D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401

    Article  PubMed  Google Scholar 

  34. Gouon-Evans V, Boussemart L, Gadue P, Nierhoff D, Koehler CI, Kubo A, Shafritz DA, Keller G (2006) BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nat Biotechnol 24:1402–1411

    Article  CAS  PubMed  Google Scholar 

  35. Green MD, Chen A, Nostro MC, d’Souza SL, Schaniel C, Lemischka IR, Gouon-Evans V, Keller G, Snoeck HW (2011) Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat Biotechnol 29:267–272

    Article  CAS  PubMed  Google Scholar 

  36. Longmire TA, Ikonomou L, Hawkins F, Christodoulou C, Cao Y, Jean JC, Kwok LW, Mou H, Rajagopal J, Shen SS et al (2012) Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell 10:398–411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Mou H, Zhao R, Sherwood R, Ahfeldt T, Lapey A, Wain J, Sicilian L, Izvolsky K, Musunuru K, Cowan C et al (2012) Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs. Cell Stem Cell 10:385–397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680

    Article  CAS  PubMed  Google Scholar 

  39. Craft AM, Ahmed N, Rockel JS, Baht GS, Alman BA, Kandel RA, Grigoriadis AE, Keller GM (2013) Specification of chondrocytes and cartilage tissues from embryonic stem cells. Development 140:2597–2610

    Article  CAS  PubMed  Google Scholar 

  40. Gaspard N, Bouschet T, Hourez R, Dimidschstein J, Naeije G, van den Ameele J, Espuny-Camacho I, Herpoel A, Passante L, Schiffmann SN et al (2008) An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455:351–357

    Article  CAS  PubMed  Google Scholar 

  41. Wichterle H, Lieberam I, Porter JA, Jessell TM (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110:385–397

    Article  CAS  PubMed  Google Scholar 

  42. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56

    Article  CAS  PubMed  Google Scholar 

  43. Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, Saito K, Yonemura S, Eiraku M, Sasai Y (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10:771–785

    Article  CAS  PubMed  Google Scholar 

  44. Suga H, Kadoshima T, Minaguchi M, Ohgushi M, Soen M, Nakano T, Takata N, Wataya T, Muguruma K, Miyoshi H et al (2011) Self-formation of functional adenohypophysis in three-dimensional culture. Nature 480:57–62

    Article  CAS  PubMed  Google Scholar 

  45. Sasai Y (2013) Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell 12:520–530

    Article  CAS  PubMed  Google Scholar 

  46. Kyba M, Perlingeiro RC, Daley GQ (2002) HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109:29–37

    Article  CAS  PubMed  Google Scholar 

  47. Ahfeldt T, Schinzel RT, Lee YK, Hendrickson D, Kaplan A, Lum DH, Camahort R, Xia F, Shay J, Rhee EP et al (2012) Programming human pluripotent stem cells into white and brown adipocytes. Nat Cell Biol 14:209–219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Arufe MC, Lu M, Kubo A, Keller G, Davies TF, Lin RY (2006) Directed differentiation of mouse embryonic stem cells into thyroid follicular cells. Endocrinology 147:3007–3015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Jiang N, Hu Y, Liu X, Wu Y, Zhang H, Chen G, Liang J, Lu X, Liu S (2010) Differentiation of E14 mouse embryonic stem cells into thyrocytes in vitro. Thyroid Off J Am Thyroid Assoc 20:77–84

    Article  CAS  Google Scholar 

  50. Antonica F, Kasprzyk DF, Opitz R, Iacovino M, Liao XH, Dumitrescu AM, Refetoff S, Peremans K, Manto M, Kyba M et al (2012) Generation of functional thyroid from embryonic stem cells. Nature 491:66–71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Iacovino M, Bosnakovski D, Fey H, Rux D, Bajwa G, Mahen E, Mitanoska A, Xu Z, Kyba M (2011) Inducible cassette exchange: a rapid and efficient system enabling conditional gene expression in embryonic stem and primary cells. Stem Cells 29:1580–1588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Nakazato M, Endo T, Saito T, Harii N, Onaya T (1997) Transcription of the thyroid transcription factor-1 (TTF-1) gene from a newly defined start site: positive regulation by TTF-1 in the thyroid. Biochem Biophys Res Commun 238:748–752

    Article  CAS  PubMed  Google Scholar 

  53. Oguchi H, Kimura S (1998) Multiple transcripts encoded by the thyroid-specific enhancer-binding protein (T/EBP)/thyroid-specific transcription factor-1 (TTF-1) gene: evidence of autoregulation. Endocrinology 139:1999–2006

    CAS  PubMed  Google Scholar 

  54. di Gennaro A, Spadaro O, Baratta MG, De Felice M, Di Lauro R (2013) Functional analysis of the murine Pax8 promoter reveals autoregulation and the presence of a novel thyroid-specific DNA-binding activity. Thyroid Off J Am Thyroid Assoc 23:488–496

    Article  Google Scholar 

  55. Presta I, Arturi F, Ferretti E, Mattei T, Scarpelli D, Tosi E, Scipioni A, Celano M, Gulino A, Filetti S et al (2005) Recovery of NIS expression in thyroid cancer cells by overexpression of Pax8 gene. BMC Cancer 5:80

    Article  PubMed Central  PubMed  Google Scholar 

  56. Fagman H, Amendola E, Parrillo L, Zoppoli P, Marotta P, Scarfo M, De Luca P, de Carvalho DP, Ceccarelli M, De Felice M et al (2011) Gene expression profiling at early organogenesis reveals both common and diverse mechanisms in foregut patterning. Dev Biol 359:163–175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  58. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  59. Narumi S, Muroya K, Asakura Y, Adachi M, Hasegawa T (2010) Transcription factor mutations and congenital hypothyroidism: systematic genetic screening of a population-based cohort of Japanese patients. J Clin Endocrinol Metab 95:1981–1985

    Article  CAS  PubMed  Google Scholar 

  60. Park I-H, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ (2008) Disease-specific induced pluripotent stem cells. Cell 134:877–886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Antonica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Antonica, F. (2015). Generation of Functional Thyroid from Embryonic Stem Cells. In: Bona, G., De Luca, F., Monzani, A. (eds) Thyroid Diseases in Childhood. Springer, Cham. https://doi.org/10.1007/978-3-319-19213-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19213-0_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19212-3

  • Online ISBN: 978-3-319-19213-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics