Skip to main content

Using Causal Discovery Algorithms to Learn About Our Planet’s Climate

  • Conference paper
Machine Learning and Data Mining Approaches to Climate Science

Abstract

Causal discovery is the process of identifying potential cause-and-effect relationships from observed data. We use causal discovery to construct networks that track interactions around the globe based on time series data of atmospheric fields, such as daily geopotential height data. The key idea is to interpret large-scale atmospheric dynamical processes as information flow around the globe and to identify the pathways of this information flow using causal discovery and graphical models. We first review the basic concepts of using causal discovery, specifically constraint-based structure learning of probabilistic graphical models. Then we report on our recent progress, including some results on anticipated changes in the climate’s network structure for a warming climate and computational advances that allow us to move to three-dimensional networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnold A, Liu Y, Abe N (2007) Temporal causal modeling with graphical Granger methods. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining (SIGKDD’07), San Jose. 10pp

    Google Scholar 

  • Bendito E, Carmona A, Encinas AM, Gesto JM (2007) Estimation of Fekete points. J Comput Phys 225:2354–2376. doi:10.1016/j.jcp.2007.03.017

    Article  Google Scholar 

  • Cano R, Sordo C, Gutierrez J (2004) Applications of Bayesian networks in meteorology. In: Gaámez JA et al (eds) Advances in Bayesian networks. Springer, Berlin/New York, pp 309–327

    Chapter  Google Scholar 

  • Chen X, Hoffman MM, Bilmes JA, Hesselberth JR, Noble WS (2010) A dynamic Bayesian network for identifying protein-binding footprints from single molecule-based sequencing data. Bioinformatics 26:i334–i342. ISMB 2010. doi:10.1093/bioinformatics/btq175

    Google Scholar 

  • Chu T, Danks D, Glymour C (2005) Data driven methods for nonlinear Granger causality: climate teleconnection mechanisms. Technical report CMU-PHIL-171, Department of Philosophy, Carnegie Mellon University, Pittsburgh

    Google Scholar 

  • Colombo D, Maathuis MH (2013) Order-independent constraint-based causal structure learning. (arXiv:1211.3295v2)

    Google Scholar 

  • Cossentino M, Raimondi FM, Vitale MC (2001) Bayesian models of the pm10 atmospheric urban pollution. In: Proceedings of the ninth international conference on modeling, monitoring and management of air pollution: air pollution IX, Ancona, Italy. WIT press, Boston, pp 143–152

    Google Scholar 

  • Deng Y, Ebert-Uphoff I (2014) Weakening of atmospheric information flow in a warming climate in the community climate system model. Geophys Res Lett 7. doi:10.1002/2013GL058646

  • Ebert-Uphoff I, Deng Y (2012a) Causal discovery for climate research using graphical models. J Clim 25(17):5648–5665. doi:10.1175/JCLI-D-11-00387.1

    Article  Google Scholar 

  • Ebert-Uphoff I, Deng Y (2012b) A new type of climate network based on probabilistic graphical models: results of Boreal winter versus summer. Geophys Res Lett 39(L19701):7. doi:10.1029/2012GL053269

    Google Scholar 

  • Ebert-Uphoff I, Deng Y (2014) Causal discovery from spatio-temporal data with applications to climate science. In: 13th international conference on machine learning and applications, Detroit, 3–6 Dec, 8pp

    Google Scholar 

  • El-dawlatly SE-d (2011) Graph-based methods for inferring neuronal connectivity from spike train ensembles. Ph.D. thesis, Electrical Engineering, Michigan State University. Available at http://etd.lib.msu.edu/islandora/object/etd%3A357/datastream/OBJ/view

  • Friedman N, Linial M, Nachman I, Pe’er D (2000) Using Bayesian networks to analyze expression data. J Comput Biol 7(3–4):601–620

    Article  Google Scholar 

  • Hlinka J, Hartman D, Vejmelka M, Runge J, Marwan N, Kurths J, Palus M (2013) Reliability of inference of directed climate networks using conditional mutual information. Entropy 15(6):2023–2045

    Article  Google Scholar 

  • Kalnay E, et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471. doi:10.1175/1520–0477(1996)077<0437:TNYRP>2.0.CO;2

  • Kennett RJ, Korb KB, Nicholson AE (2001) Seabreeze prediction using Bayesian networks. In: Proceedings of the fifth Pacific-Asia conference on knowledge discovery and data minung (PAKDD’01), Hong Kong (PAKDD), pp 148–153

    Google Scholar 

  • Kistler R, et al (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–267. doi:10.1175/1520-0477(2001)082¡0247:TNNYRM¿2.3.CO;2

    Article  Google Scholar 

  • Koller D, Friedman N (2009) Probabilistic graphical models – principles and techniques, 1st edn. MIT, Cambridge, 1280pp

    Google Scholar 

  • Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, Califano A (2006) Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7(Suppl.):S7. doi:10.1186/1471-2105-7-S1-S7

    Google Scholar 

  • Neapolitan RE (2004) Learning Bayesian networks. Pearson Prentice Hall, Upper Saddle River, NJ, 674pp

    Google Scholar 

  • Needham CJ, Bradford JR, Bulpitt AJ, Westhead DR (2007) A primer on learning in Bayesian networks for computational biology. PLoS Comput Biol 3(8):e129. doi:10.1371/journal.pcbi.0030129

    Article  Google Scholar 

  • Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference, 2nd printing. Morgan Kaufman, San Francisco, CA, 552pp

    Google Scholar 

  • Runge J (2014) Detecting and quantifying causality from time series of complex systems. Ph.D. thesis, Humboldt-University Berlin. Available at http://edoc.hu-berlin.de/dissertationen/runge-jakob-2014-08-05/PDF/runge.pdf

  • Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science 22 308(5721):523–529. doi:10.1126/science.1105809

    Article  Google Scholar 

  • Shipley B (2002) Cause and correlation in biology: a user’s guide to path analysis, structural equations and causal inference, 1st edn. Cambridge University Press, Cambridge, 332p

    Google Scholar 

  • Spirtes P, Glymour C (1991) An algorithm for fast recovery of sparse causal graphs. Soc Sci Comput Rev 9(1):67–72

    Article  Google Scholar 

  • Spirtes P, Glymour C, Scheines R (1993) Causation, prediction, and search. Springer lecture notes in statistics, 1st edn. Springer, New York, 526pp

    Book  Google Scholar 

  • Tsonis AA, Roebber PJ (2004) The architecture of the climate network. Physica A 333:497–504. doi:10.1016/j.physa.2003.10.045

    Article  Google Scholar 

  • Yin JH (2005) A consistent Poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 32:L18701. doi:10.1029/2005GL023684

    Article  Google Scholar 

  • Zerenner T, Friedrichs P, Lehnerts K, Hense A (2014) A Gaussian graphical model approach to climate networks. Chaos 24:023103

    Article  Google Scholar 

Download references

Acknowledgements

Support for this work is provided by two grants of the NSF Climate and Large-Scale Dynamics (CLD) program, namely, grant AGS-1147601 awarded to Yi Deng and a collaborative grant (AGS-1445956 and AGS-1445978) awarded to both authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imme Ebert-Uphoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ebert-Uphoff, I., Deng, Y. (2015). Using Causal Discovery Algorithms to Learn About Our Planet’s Climate. In: Lakshmanan, V., Gilleland, E., McGovern, A., Tingley, M. (eds) Machine Learning and Data Mining Approaches to Climate Science. Springer, Cham. https://doi.org/10.1007/978-3-319-17220-0_11

Download citation

Publish with us

Policies and ethics