Skip to main content

Congruence Subgroups, Cusps and Manin Symbols over Number Fields

  • Conference paper
Computations with Modular Forms

Part of the book series: Contributions in Mathematical and Computational Sciences ((CMCS,volume 6))

Abstract

We develop an explicit theory of congruence subgroups, their cusps, and Manin symbols for arbitrary number fields. While our motivation is in the application to the theory of modular symbols over imaginary quadratic fields, we give a general treatment which makes no special assumptions on the number field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We avoid the common notation (a:b) in order to avoid confusion with M-symbols.

  2. 2.

    Note that the definition marked (*) on [Shi71, p. 25] is not quite correct as stated: in each residue class modulo N/d one must take a representative c which is coprime to d, if one exists, but one cannot restrict to the range 0<cN/d.

References

  1. M.T. Aranés, Modular symbols over number fields. PhD thesis, University of Warwick, 2011. See http://wrap.warwick.ac.uk/35128/

  2. J.S. Bygott, Modular forms and elliptic curves over imaginary quadratic number fields. PhD thesis, University of Exeter, 1998. See http://hdl.handle.net/10871/8322

  3. H. Cohen, Advanced Topics in Computational Number Theory. Graduate Texts in Mathematics, vol. 193 (Springer, New York, 2000)

    Book  MATH  Google Scholar 

  4. J.E. Cremona, Hyperbolic tessellations, modular symbols, and elliptic curves over complex quadratic fields. Compos. Math. 51, 275–323 (1984)

    MATH  MathSciNet  Google Scholar 

  5. J.E. Cremona, Modular symbols for Γ 1(N) and elliptic curves with everywhere good reduction. Math. Proc. Camb. Philos. Soc. 111(2), 199–218 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. J.E. Cremona, Algorithms for Modular Elliptic Curves, 2nd edn. (Cambridge University Press, Cambridge, 1997). Available from http://www.warwick.ac.uk/staff/J.E.Cremona/book/fulltext/index.html

    MATH  Google Scholar 

  7. M. Greenberg, J. Voight, Computing systems of Hecke eigenvalues associated to Hilbert modular forms. Math. Comput. 80(274), 1071–1092 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. M.P. Lingham, Modular forms and elliptic curves over imaginary quadratic fields. PhD thesis, University of Nottingham, 2005. See http://etheses.nottingham.ac.uk/archive/00000138/

  9. A. Mohamed, Universal Hecke L-series associated with cuspidal eigenforms over imaginary quadratic fields (this volume). doi:10.1007/978-3-319-03847-6_9

  10. M.H. Şengün, On the integral cohomology of Bianchi groups. Exp. Math. 20(4), 487–505 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. M.H. Şengün, Arithmetic aspects of Bianchi groups (this volume). doi:10.1007/978-3-319-03847-6_11

  12. G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions. Publications of the Mathematical Society of Japan, vol. 11 (Iwanami Shoten, Publishers, Tokyo, 1971). Kanô Memorial Lectures, No. 1

    MATH  Google Scholar 

  13. W. Stein, Modular Forms, a Computational Approach. Graduate Studies in Mathematics, vol. 79 (American Mathematical Society, Providence, 2007)

    MATH  Google Scholar 

  14. W. Stein et al., Sage Mathematics Software (Version 5.2). The Sage Development Team, 2012. http://www.sagemath.org

  15. G. van der Geer, Hilbert Modular Surfaces (Springer, Berlin, 1988)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Cremona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Cremona, J.E., Aranés, M.T. (2014). Congruence Subgroups, Cusps and Manin Symbols over Number Fields. In: Böckle, G., Wiese, G. (eds) Computations with Modular Forms. Contributions in Mathematical and Computational Sciences, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-03847-6_4

Download citation

Publish with us

Policies and ethics