Skip to main content

Modern Energies Services for Cooking: from Improved Cook-Stoves to Domestic and Community Biogas Based Systems

  • Chapter
  • First Online:
Renewable Energy for Unleashing Sustainable Development

Abstract

Energy is crucial for a better quality of life and for sustainable human development. This has been demonstrated in previous chapters. It has been widely recognized that food and water security, productivity, health, education, climate change, and communication services are greatly affected by the quality and the quantity of energy services. The lack of or insufficient access to clean, affordable, reliable energy carriers is a major obstacle to reduce poverty and to improve the conditions and standard of living for the majority of the world’s population, thus hindering economic and social development [1–4]. Increasing access to sustainable and modern energy services will enable income generation; it will also reduce the time and drudgery of collecting fuel wood; support cleaner and more efficient cooking and heating options; and finally, it could also provide indoor lighting security at night, thus enabling children to study in the evenings [3, 5–12]. Yet many in the world, especially in the developing countries, still have insufficient access to sustainable energy services. This chapter presents Improved Cook-Stoves (ICS) and domestic biogas plants as technological options to improve access to sustainable energy services at both the household and community levels. The relevance of the technology, its performances, impacts and dissemination are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gaye A (2007) Access to energy and human development. Human development report 2008

    Google Scholar 

  2. Energy for sustainable development. A policy agenda (2002). UNDP, New York

    Google Scholar 

  3. Kaygusuz K (2012) Energy for sustainable development: a case of developing countries. Renew Sustain Energy Rev 16 (2):1116–1126. doi:http://dx.doi.org/10.1016/j.rser.2011.11.013

  4. Bazilian M, Nussbaumer P, Eibs-Singer C, Brew-Hammond A, Modi V, Sovacool B, Ramana V, Aqrawi P-K (2012) Improving access to modern energy services: insights from case studies. Electr J 25(1):93–114

    Article  Google Scholar 

  5. Global Network on Energy for Sustainable Development (2008) Clean Energy for the Urban poor: an urgent isssue. GNESD. http://books.google.it/books?id=oU6tMwEACAAJ

  6. The Energy Access Situation in Developing Countries: A Review Focusing on the Least Developed Countries and Sub-Saharan Africa (2009) UNDP and World Health Organization

    Google Scholar 

  7. Bond T, Venkataraman C, Masera O (2004) Global atmospheric impacts of residential fuels. Energy Sustain Dev 8 (3):20–32. doi:http://dx.doi.org/10.1016/S0973-0826(08)60464-0

  8. Dherani M, Pope D, Mascarenhas M, Smith KR, Weber M, Bruce N (2008) Indoor air pollution from unprocessed solid fuel use and pneumonia risk in children aged under five years: a systematic review and meta-analysis. Bull World Health Organ 86(5):390–398C

    Article  Google Scholar 

  9. Kandlikar M, Reynolds C, Grieshop AP (2009) A perspective paper on black carbon mitigation as a response to climate change. Copenhagen Consensus Center, Copenhagen

    Google Scholar 

  10. Dey NC, Ali A, Ashraf A, Arif T, Mobarak AM, Miller G (2012) Pilot intervention of improved cook stoves in rural areas: assessment of effects on fuel use, smoke emission and health

    Google Scholar 

  11. State of the World‘s Forests 2011 (2011) Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  12. Jan I (2012) What makes people adopt improved cookstoves? Empirical evidence from rural northwest Pakistan. Renew Sustain Energy Rev 16 (5):3200–3205. doi:http://dx.doi.org/10.1016/j.rser.2012.02.038

  13. Poor people’s energy outlook 2010 (2010) Practical Action, Rugby

    Google Scholar 

  14. Poor people’s energy outlook 2013: Energy for community services (2010) Practical Action, Rugby

    Google Scholar 

  15. Palit D, Garud S (2010) Energy consumption in the residential sector in the Himalayan kingdom of Bhutan. Boiling Point 58:34–36

    Google Scholar 

  16. Kaygusuz K (2011) Energy services and energy poverty for sustainable rural development. Renew Sustain Energy Rev 15 (2):936–947. doi:http://dx.doi.org/10.1016/j.rser.2010.11.003

  17. IEA (2012) World energy outlook 2012. International energy agency (IEA)

    Google Scholar 

  18. World health organization—indoor air pollution. http://www.who.int/indoorair/en/ Accessed 18 June 2013

  19. Agenbroad J, DeFoort M, Kirkpatrick A, Kreutzer C (2011) A simplified model for understanding natural convection driven biomass cooking stoves—Part 1: setup and baseline validation. Energy Sustain Dev 15:160–168

    Article  Google Scholar 

  20. Yongabi KA, Harris PL, Lewis DM (2009) Poultry faeces management with a simple low cost plastic digester. Afr J Biotechnol 8(8):1560–1566

    Google Scholar 

  21. Partnership for clean Indoor air. http://www.pciaonline.org/ Accessed 16 June 2013

  22. Energy and Development Methodology (2010) International Energy Agency, Organisation for Economic Co-operation and Development (OECD)

    Google Scholar 

  23. MacCarty N, Ogle D, Still D, Bond T, Roden C (2012) A laboratory comparison of the global warming impact of five major types of biomass cooking stoves. Energy Convers Manage 64:87–96

    Article  Google Scholar 

  24. MacCarty N, Still D, Ogle D (2010) Fuel use and emissions performance of fifty cooking stoves in the laboratory and related benchmarks of performance. Energy Sustain Dev 14:161–171

    Article  Google Scholar 

  25. Hedon—household energy network http://www.hedon.info/tiki-index.php

  26. Eco kalan http://www.eco-kalan.com/index.php?id=2,0,0,1,0,0 Accessed 17 June 2013

  27. Takate stove. http://www.hedon.info/BP38_HouseholdEnergyInHighColdRegionsOfMorocco?bl=y Accessed 17 June 2013

  28. Fixed clay stove. http://www.hedon.info/BP31_TheChencottaiChulah?bl=y Accessed 17 June 2013

  29. Test Results of Cook Stove Performance. Partnership for Clean Indoor Air, Aprovecho Research Center, Shell Foundation, United States Environmental Protection Agency

    Google Scholar 

  30. Improved Stoves as a Means to Increase Efficient Use of Energy. European Commission

    Google Scholar 

  31. Baldwin SF (1987) Biomass stoves: engineering design, development, and dissemination. Princeton University, Princeton

    Google Scholar 

  32. Vesto stove http://www.newdawnengineering.com/website/stove/singlestove/vesto/ Accessed 18 June 2013

  33. Basintuthu stove http://www.newdawnengineering.com/website/stove/singlestove/basintuthu/

  34. Shisa stove http://www.newdawnengineering.com/website/stove/singlestove/shisa/ Accessed 18 June 2013

  35. Tsotso stove http://www.newdawnengineering.com/website/stove/singlestove/tsotso/ Accessed 18 June 2013

  36. Envirofit international http://www.envirofit.org/ Accessed 18 June 2013

  37. Stovetec http://stovetecstore.net/ Accessed 18 June 2013

  38. Uganda household rocket stove http://www.bioenergylists.org/stovesdoc/Scott/ugandarocket/Uganda_Household_Rocket.pdf Accessed 18 June 2013

  39. Bryden M, Still D, Scott P, Hoffa G, Ogle D, Bailis R, Goyer K (2006) Design principles for wood burning cook stoves. Aprovecho Research Center, Shell Foundation, Partnership for Clean Indoor Air

    Google Scholar 

  40. Charron D The Ecostove getting rid of nearly 90 % of kitchen wood smoke

    Google Scholar 

  41. Masera O, Edwards R, Arnez C.A, Berrueta V, Johnson M, Bracho L.R, Riojas-Rodríguez H, Smith K.R (2011) Impact of Patsari improved cookstoves on indoor air quality in Michoacán, Mexico. Energy Sustain Dev 11:45–56

    Google Scholar 

  42. Hegarty D (2006) Satisfying a burning need. Philips Res Technol Mag 28:28–31

    Google Scholar 

  43. Roth C (2011) Micro-gasification: cooking with gas from biomass. GIZ—HERA

    Google Scholar 

  44. Karve gasifier http://www.samuchit.com/clean-cooking-devices-h/26-sampada-gasifier-stove.html Accessed 19 June 2013

  45. Belonio AT (2005) Rice husk gas stove handbook. Central Philippine University, Philippines

    Google Scholar 

  46. My little cook stove http://www.fuocoperfetto.altervista.org/la-mlc-di-vitali-parmigiani.html Accessed 19 June 2013

  47. Making the easy iCan http://www.greaterdemocracy.org/wp-content/uploads/2011/08/Easy_ICan_ver_1-5.pdf Accessed 19 June 2013

  48. Andreatta D (2007) A report on some experiments with the top-lit up draft (TLUD) stove

    Google Scholar 

  49. The beaner backpacking stove http://worldstove.com/products/the-beaner-backpacking-stove/ Accessed 5 July 2013

  50. International biochar initiative http://www.biochar-international.org/technology/stoves Accessed 5 July 2013

  51. Biolite http://www.biolitestove.com/ Accessed 19 June 2013

  52. Muddy charcoal stove http://www.hedon.info/BP31_TheSudaneseMuddyStove?bl=y Accessed 20 June 2013

  53. Zambian charcoal stove http://www.hedon.info/BP18_ZambianCharcoalStoves?bl=y Accessed 20 June 2013

  54. Basintuthu stove http://www.newdawnengineering.com/website/stove/singlestove/basintuthu/ Accessed 20 June 2013

  55. Maputo stove at http://stoves.bioenergylists.org/crispinmcsupdate Accessed 20 June 2013

  56. Institutional charcoal stove http://www.hedon.info/BP10_CommunityCharcoalStovesInDodoma-Tanzania?bl=y Accessed 20 June 2013

  57. Senegal diambar stove http://www.hedon.info/BP35_TheSenegalDiambarStoveProject?bl=y Accessed 20 June 2013

  58. Burundi charcoal stove http://www.hedon.info/BP13_BurundiImprovedCharcoalStoves?bl=y Accessed 20 June 2013

  59. Hybrid wood-charcoal stove http://www.hedon.info/TheTurboWood-gasStove?bl=y Accessed 20 June 2013

  60. Hybrid stoves fuelled by kerosene and vegetable oil. http://servalsgroup.blogspot.it/2008/06/hybrid-cooking-stove.html Accessed 20 June 2013

  61. Stumpf EMW (2002) Plant-oil cooking stove for developing countries

    Google Scholar 

  62. FSP stoves http://www.newdawnengineering.com/website/stove/paraffin/ Accessed 20 June 2013

  63. Rajvanshi AK (2009) Ethanol lantern cum stove for rural areas. Nimbkar Agricultural Research Institute, Phaltan

    Google Scholar 

  64. Ethanol stove http://www.projectgaia.com/ Accessed 20 June 2013

  65. Fan-free bi-fuel Pup stove http://worldstove.com/products/fan-free-bi-fuel-pupstove/ Accessed 20 June 2013

  66. Gaseous fuels stoves at http://www.jindalgas.com/ Accessed 20 June 2013

  67. Cuce PM, Cuce E (2012) A comprehensive review on solar cookers. Appl Energy 102:1399–1421

    Google Scholar 

  68. Muthusivagami RMV, Sethumadhavan R (2008) A comprehensive review on solar cookers—a review. Renew Sustain Energy Rev 14:691–701

    Google Scholar 

  69. HotPot solar cooking. http://www.she-inc.org/hotpot.php Accessed 21 June 2013

  70. DATS solar panel. http://solarcooking.org/plans/DATS.htm Accessed 21 June 2013

  71. Brewer S, Elswit J, Sun S, Chang Y, Joseph C, Chel A, Verma R, Goel G, Verma AK, Sundaray S, Ghai S (2010) Business plan for biomass solar hybrid cooker. ACARA—Institute of the Environment—University of Minnesota, St. Paul

    Google Scholar 

  72. El-Sebaii AA, Domanshi R, Jaworski M (1994) Experimental and theoretical investigation of a box-type solar cooker with multi-step inner reflectors. Energy 19:515–524

    Google Scholar 

  73. Buddhi DS, Daulat S, Sharma A (2003) Thermal performance evaluation of a latent heat storage unit for late evening cooking in a solar cooker having three reflectors. Energy Convers Manag 44:809–817

    Google Scholar 

  74. Amer EH (2003) Theoretical and experimental assessment of a double exposure solar cooker. Energy Convers Manage 44:2651–2663

    Article  Google Scholar 

  75. Khalifa A (1986) On prediction of solar cooker performance and cooking in Pyrex pots. Solar Wind Technol 3:13–19

    Article  Google Scholar 

  76. Nyahoro PK, Johnson R.R, Edwards J (1997) Simulated performance of thermal storage in a solar cooker. Solar energy 59:11–17

    Google Scholar 

  77. Ghai ML (1953) Design of reflector type direct solar cookers. J Sci Ind Res A 12:165–175

    Google Scholar 

  78. Arenas JM (2007) Design, development and testing of a portable parabolic solar kitchen. Renew Energy 32:257–266

    Article  Google Scholar 

  79. Al-Soud MS, Abdallah E, Akayleh A, Abdallah S, Hrayshat ES (2010) A parabolic solar cooker with automatic two axes sun tracking system. Appl Energy 87 (2):463–470. doi:http://dx.doi.org/10.1016/j.apenergy.2009.08.035

    Google Scholar 

  80. Samsung product. http://www.samsung.com/us/appliances/electric-ranges Accessed 2 July 2013

  81. General electric products. http://products.geappliances.com/ApplProducts/html/GEAResults.htm#Category=Electric_Cooktops Accessed 2 July 2013

  82. LG products. http://www.lg.com/ae/electric-stoves Accessed 2 July 2013

  83. Global alliance for clean cook stoves. http://www.cleancookstoves.org/ Accessed 22 June 2013

  84. ISO international workshop on clean and efficient cook stoves—partnership for clean Indoor air. http://www.pciaonline.org/proceedings/iso-international-workshop-clean-and-efficient-cookstoves Accessed 2 July 2013

  85. Hanna R, Duflo E, Greenstone M (2012) Up in smoke: the influence of household behavior on the long-run impact of improved cooking stoves. MIT—Department of Economics, Cambridge

    Google Scholar 

  86. ProBEC—GIZ Hera.http://www.probec.net/displaysection.php?czacc=&zSelectedSectionID=sec1192750452 Accessed 23 June 2013

  87. Aprovecho Research Center. http://aprovecho.org/lab/ Accessed 2 July 2013

  88. Colorado State University—Department of Mechanical Engineering—Engines and Energy Conversion Laboratory. http://www.eecl.colostate.edu/research/household.php Accessed on 2 July 2013

  89. Arthur R, Baidoo MF, Antwi E (2011) Biogas as a potential renewable energy source: a Ghanaian case study. Renew Energy 36 (5):1510–1516. doi:http://dx.doi.org/10.1016/j.renene.2010.11.012

    Google Scholar 

  90. Okello C, Pindozzi S, Faugna S, Boccia L (2013) Development of bioenergy technologies in Uganda: a review of progress. Renew Sustain Energy Rev 18:55–63

    Article  Google Scholar 

  91. Bond T, Templeton MR (2011) History and future of domestic biogas plants in the developing world. Energy Sustain Dev 15 (4):347–354. doi:http://dx.doi.org/10.1016/j.esd.2011.09.003

  92. Sannaa MN (2004) The development of biogas technology in Denmark: achievements and obstacles. Department of Environment, Technology and Social Studies Roskilde University (RUC), Roskilde

    Google Scholar 

  93. Bansal M, Saini RP, Khatod DK (2013) Development of cooking sector in rural areas in India—a review. Renew Sustain Energy Rev 17 (0):44–53. doi:http://dx.doi.org/10.1016/j.rser.2012.09.014

  94. Biogas Digest. Volume I. Biogas Basics. isat and gtz. http://www.gate-international.org/documents/publications/webdocs/pdfs/biogasdigestvol1.pdf Accessed 27 June 2013

  95. Ding W, Niu H, Chen J, Du J, Wu Y (2012) Influence of household biogas digester use on household energy consumption in a semi-arid rural region of northwest China. Appl Energy 97 (0):16–23. doi:http://dx.doi.org/10.1016/j.apenergy.2011.12.017

  96. Massé DI, Talbot G, Gilbert Y (2011) On farm biogas production: a method to reduce GHG emissions and develop more sustainable livestock operations. Animal Feed Sci Technol 166–167 (0):436–445. doi:http://dx.doi.org/10.1016/j.anifeedsci.2011.04.075

  97. Aggarangsi P, Tippayawong N, Moran JC, Rerkkriangkrai P Overview of livestock biogas technology development and implementation in Thailand. Energy Sustain Dev (0). doi:http://dx.doi.org/10.1016/j.esd.2013.03.004

  98. Rajabapaiah P, Ramanayya K, Mohan S, Reddy AKN (1979) Studies in biogas technology. Part I. Performance of a conventional biogas plant. In: Sadhana S (ed) Academy proceedings in engineering sciences. Indian academy of sciences, vol 3, pp 357–363

    Google Scholar 

  99. Gurung A, Oh SE (2013) Conversion of traditional biomass into modern bio energy systems: a review in context to improve the energy situation in Nepal. Renew Energy 50 (0):206–213. doi:http://dx.doi.org/10.1016/j.renene.2012.06.021

  100. Mwakaje AG (2008) Dairy farming and biogas use in Rungwe district, South-west Tanzania: a study of opportunities and constraints. Renew Sustain Energy Rev 12 (8):2240–2252. doi:http://dx.doi.org/10.1016/j.rser.2007.04.013

  101. Maes WH, Verbist B (2012) Increasing the sustainability of household cooking in developing countries: policy implications. Renew Sustain Energy Rev 16 (6):4204–4221. doi:http://dx.doi.org/10.1016/j.rser.2012.03.031

  102. Jiang X, Sommer SG, Christensen KV (2011) A review of the biogas industry in China. Energy Policy 39 (10):6073–6081. doi:http://dx.doi.org/10.1016/j.enpol.2011.07.007

  103. Ghimire PC (2013) SNV supported domestic biogas programmes in Asia and Africa. Renew Energy 49 (0):90–94. doi:http://dx.doi.org/10.1016/j.renene.2012.01.058

  104. Qi J, Chen B, Chen W, Chu X (2012) Inventory analysis for a household biogas system. Procedia Environ Sci 13 (0):1902–1906. doi:http://dx.doi.org/10.1016/j.proenv.2012.01.184

    Google Scholar 

  105. Alwis A de (2002) Biogas—a review of Sri Lanka’s performance with a renewable energy technology. Energy Sustain Dev 6 (1):30–37. doi:http://dx.doi.org/10.1016/S0973-0826(08)60296-3

  106. Pandey P (2013) Household biogas digester. an underutilized potential. http://csanr.wsu.edu/publications/proceedings/small%20digester/pandey%20small%20scale%20digester.pdf Accessed 24 June 2013

  107. Nzila C, Dewulf J, Spanjers H, Tuigong D, Kiriamiti H, van Langenhove H (2012) Multi criteria sustainability assessment of biogas production in Kenya. Appl Energy 93 (0):496–506. doi:http://dx.doi.org/10.1016/j.apenergy.2011.12.020

    Google Scholar 

  108. Jagadish KS, Chanakya HN, Rajabapaiah P, Anand V (1998) Plug flow digestors for biogas generation from leaf biomass. Biomass Bioenergy 14 (5–6):415–423. doi:http://dx.doi.org/10.1016/S0961-9534(98)00003-8

    Google Scholar 

  109. Nijaguna BT (2006) Biogas Technology. New Age International (P) Limited. at: http://books.google.it/books?id=QfLDbf3qbcEC

  110. Okello C, Pindozzi S, Faugno S, Boccia L (2013) Development of bio energy technologies in Uganda: a review of progress. Renew Sustain Energy Rev 18 (0):55–63. doi:http://dx.doi.org/10.1016/j.rser.2012.10.004

  111. Anh TH (2010) Evaluation study for household biogas plant models. SNV. http://www.snvworld.org/fr/publications/evaluation-study-for-household-biogas-plant-models Accessed 24 June 2013

  112. Biogas Production and Utilisation. IEA Bioenergy

    Google Scholar 

  113. Chen L, Zhao L, Ren C, Wang F (2012) The progress and prospects of rural biogas production in China. Energy Policy 51 (0):58–63. doi:http://dx.doi.org/10.1016/j.enpol.2012.05.052

  114. Katuwal H, Bohara AK (2009) Biogas: a promising renewable technology and its impact on rural households in Nepal. Renew Sustain Energy Rev 13 (9):2668–2674. doi:http://dx.doi.org/10.1016/j.rser.2009.05.002

  115. Garfí M, Ferrer-Martí L, Velo E, Ferrer I (2012) Evaluating benefits of low-cost household digesters for rural Andean communities. Renew Sustain Energy Rev 16 (1):575–581. doi:http://dx.doi.org/10.1016/j.rser.2011.08.023

  116. Gwavuya SG, Abele S, Barfuss I, Zeller M, Müller J (2012) Household energy economics in rural Ethiopia: a cost-benefit analysis of biogas energy. Renew Energy 48 (0):202–209. doi:http://dx.doi.org/10.1016/j.renene.2012.04.042

  117. Amigun B, von Blottnitz H (2010) Capacity-cost and location-cost analyses for biogas plants in Africa. Resour Conserv Recycl 55 (1):63–73. doi:http://dx.doi.org/10.1016/j.resconrec.2010.07.004

  118. Xiao-zhu Z, She-liang OU, Chun-lan H (2011) Problems and solutions based on comprehensive utilization of biogas. Energy Procedia 5 (0):42–47. doi:http://dx.doi.org/10.1016/j.egypro.2011.03.008

  119. Lam J, Boers W (2005) Report on the Feasibility Study for a Biodigester Support Programme

    Google Scholar 

  120. Eshete G, Sonder K, ter Heegde F (2006) Report on the feasibility study of a national programme for domestic biogas in Ethiopia. SNV

    Google Scholar 

  121. Gichohi P (2009) Analysis of market potential for domestic biogas in rural Kenya. GTZ-PSDA

    Google Scholar 

  122. Biogas user survey, Lao PDR 2011 (2011). http://www.snvworld.org/en/countries/lao-pdr/publications/biogas-user-survey-lao-pdr-2011 Accessed 24 June 2013

  123. Ministry Of Energy And Water Resources (Minee) Republic of Cameroon (2010) National biogas programme. http://www.snvworld.org/sites/www.snvworld.org/files/publications/blue_flame_for_brighter_future_national_biogas_programme_cameroon_2010.pdf Accessed 24 June 2013

  124. Bajgain S, Shakya I, Mendis MS (2005) The Nepal Biogas support program: a successful model of public private partnership for rural household energy supply. Biogas Sector Partnership-Nepal

    Google Scholar 

  125. Mwirigi JW, Makenzi PM, Ochola WO (2009) Socio-economic constraints to adoption and sustainability of biogas technology by farmers in Nakuru Districts, Kenya. Energy Sustain Dev 13 (2):106–s115. doi:http://dx.doi.org/10.1016/j.esd.2009.05.002

  126. Grassroots engineering—modi research group. http://www.grassrootsengineering.org/testing-the-efficiency-of-firewood-stoves.html Accessed 2 July 2013

  127. Colegio mark projects—cantle Guatemala. http://servinghandskc.wordpress.com/2011/08/08/wood-fire-cooking-in-guatemala/ Accessed 2 July 2013

  128. Ecolocalizer http://ecolocalizer.com/2009/04/29/black-soot-time-for-a-fair-discussion/ Accessed 2 July 2013

  129. Yangzhou kerosene stove co ltd. http://www.marginup.com/products/46140/62-Kerosene-Stove.html Accessed 5 July 2013

  130. Biogas stoves: How do they work?. http://blurbsaboutscience.blogspot.it/2012/12/biogas-stoves-how-do-they-work.html Accessed 5 July 2013

  131. Sandrock C, Vaal P de, Weightman D (2006) Performance comparison of controllers acting on a batch pulp digester using monte carlo modelling. Control Eng Pract 14 (8):949–958. doi:http://dx.doi.org/10.1016/j.conengprac.2005.05.009

  132. Tauseef SM, Premalatha M, Abbasi T, Abbasi SA (2013) Methane capture from livestock manure. J Environ Manage 117 (0):187–207. doi:http://dx.doi.org/10.1016/j.jenvman.2012.12.022

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Mapelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mapelli, F., Mungwe, J.N. (2013). Modern Energies Services for Cooking: from Improved Cook-Stoves to Domestic and Community Biogas Based Systems. In: Colombo, E., Bologna, S., Masera, D. (eds) Renewable Energy for Unleashing Sustainable Development. Springer, Cham. https://doi.org/10.1007/978-3-319-00284-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00284-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00283-5

  • Online ISBN: 978-3-319-00284-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics