Skip to main content

Green tea catechins as brain-permeable, non toxic iron chelators to “iron out iron” from the brain

  • Chapter
Oxidative Stress and Neuroprotection

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 71))

Summary

Evidence to link abnormal metal (iron, copper and zinc) metabolism and handling with Parkinson’s and Alzheimer’s diseases pathology has frequently been reported. The capacity of free iron to enhance and promote the generation of toxic reactive oxygen radicals has been discussed numerous times. Metal chelation has the potential to prevent iron-induced oxidative stress and aggregation of alpha-synuclein and beta-amyloid peptides. The efficacy of iron chelators depends on their ability to penetrate the subcellular compartments and cellular membranes where iron dependent free radicals are generated. Thus, natural, non-toxic, brain permeable neuroprotective drugs, are preferentially advocated for “ironing out iron” from those brain areas where it preferentially accumulates in neurodegenerative diseases. This review will discuss the most recent findings from in vivo and in vitro studies concerning the transitional metal (iron and copper) chelating property of green tea and its major polyphenol, (−)-epigallocatechin-3-gallate with respect to their potential for the treatment of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atwood CS, Obrenovich ME, Liu T, Chan H, Perry G, Smith MA, Martins RN (2003) Amyloid-beta: a chameleon walking in two worlds: a review of the trophic and toxic properties of amyloid-beta. Brain Res Brain Res Rev 43: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Beard JL, Connor JR, Jones BC (1993) Iron in the brain. Nutr Rev 51: 157–170

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shachar D, Eshel G, Finberg JP, Youdim MB (1991) The iron chelator desferrioxamine (Desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal dopamine neurons. J Neurochem 56: 1441–1444

    Article  PubMed  CAS  Google Scholar 

  • Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW (2004) Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci USA 101: 2173–2178

    Article  PubMed  CAS  Google Scholar 

  • Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, Verna JM (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 65: 135–172

    Article  PubMed  CAS  Google Scholar 

  • Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56: 317–333

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Sudhof TC (2001) A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293: 115–120

    Article  PubMed  CAS  Google Scholar 

  • Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis I, Fraser FW, Kim Y, Huang X, Goldstein LE, Moir RD, Lim JT, Beyreuther K, Zheng H, Tanzi RE, Masters CL, Bush AI (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30: 665–676

    Article  PubMed  CAS  Google Scholar 

  • Choi YT, Jung CH, Lee SR, Bae JH, Baek WK, Suh MH, Park J, Park CW, Suh SI (2001) The green tea polyphenol (−)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci 70: 603–614

    Article  PubMed  CAS  Google Scholar 

  • Cooper R, Morre DJ, Morre DM (2005) Medicinal benefits of green tea: Part I. Review of noncancer health benefits. J Altern Complem Med 11: 521–528

    Article  Google Scholar 

  • Cuajungco MP, Frederickson CJ, Bush AI (2005) Amyloid-beta metal interaction and metal chelation. Subcell Biochem 38: 235–254

    PubMed  CAS  Google Scholar 

  • De Strooper B, Annaert W (2000) Proteolytic processing and cell biological functions of the amyloid precursor protein. J Cell Sci 113: 1857–1870

    PubMed  Google Scholar 

  • Esler WP, Wolfe MS (2001) A portrait of Alzheimer secretases — new features and familiar faces. Science 293: 1449–1454

    Article  PubMed  CAS  Google Scholar 

  • Gal S, Zheng H, Fridkin M, Youdim MBH (2005) Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases. In vivo selective brain monoamine oxidase inhibition and prevention of MPTP-induced striatal dopamine depletion. J Neurochem 95: 79–88

    Article  PubMed  CAS  Google Scholar 

  • Galati G, O’Brien PJ (2004) Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic Biol Med 37: 287–303

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Pimplikar SW (2001) The gamma-secretase-cleaved C-terminal fragment of amyloid precursor protein mediates signaling to the nucleus. Proc Natl Acad Sci USA 98: 14979–14984

    Article  PubMed  CAS  Google Scholar 

  • Grinberg LN, Newmark H, Kitrossky N, Rahamim E, Chevion M, Rachmilewitz EA (1997) Protective effects of tea polyphenols against oxidative damage to red blood cells. Biochem Pharmacol 54: 973–978

    Article  PubMed  CAS  Google Scholar 

  • Grunblatt E, Mandel S, Jacob-Hirsch J, Zeligson S, Amariglo N, Rechavi G, Li J, Ravid R, Roggendorf W, Riederer P, Youdim MBH (2004) Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion=cellular matrix and vesicle trafficking genes. J Neural Transm 111: 1543–1573

    Article  PubMed  CAS  Google Scholar 

  • Guo Q, Zhao B, Li M, Shen S, Xin W (1996) Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochim Biophys Acta 1304: 210–222

    PubMed  CAS  Google Scholar 

  • Gutman RL, Ryu RH (1996) Rediscovering tea: an exploration of the scientific literature. Herbal Gram 37: 33–48

    Google Scholar 

  • Hanson ES, Rawlins ML, Leibold EA (2003) Oxygen and iron regulation of iron regulatory protein 2. J Biol Chem 278: 40337–40342

    Article  PubMed  CAS  Google Scholar 

  • Hider RC, Liu ZD, Khodr HH (2001) Metal chelation of polyphenols. Methods Enzymol 335: 190–203

    Article  PubMed  CAS  Google Scholar 

  • Higdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43: 89–143

    Article  PubMed  CAS  Google Scholar 

  • Honda K, Smith MA, Zhu X, Baus D, Merrick WC, Tartakoff AM, Hattier T, Harris PL, Siedlak SL, Fujioka H, Liu Q, Moreira PI, Miller FP, Nunomura A, Shimohama S, Perry G (2005) Ribosomal RNA in Alzheimer disease is oxidized by bound redox-active iron. J Biol Chem 280: 20978–20986

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Moir RD, Tanzi RE, Bush AI, Rogers JT (2004) Redox-active metals, oxidative stress, and Alzheimer’s disease pathology. Ann N Y Acad Sci 1012: 153–163

    Article  PubMed  CAS  Google Scholar 

  • Jellinger KA (2003) Neuropathological spectrum of synucleinopathies. Mov Disord 18[Suppl 6]: S2–S12

    Article  PubMed  Google Scholar 

  • Joseph JA, Shukitt-Hale B, Casadesus G (2005) Reversing the deleterious effects of aging on neuronal communication and behavior: beneficial properties of fruit polyphenolic compounds. Am J Clin Nutr 81[Suppl 1]: 313S–316S

    PubMed  CAS  Google Scholar 

  • Kaur D, Yantiri F, Rajagopalan S, Kumar J, Mo JQ, Boonplueang R, Viswanath V, Jacobs R, Yang L, Beal MF, DiMonte D, Volitaskis I, Ellerby L, Cherny RA, Bush AI, Andersen JK (2003) Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease. Neuron 37: 899–909

    Article  PubMed  CAS  Google Scholar 

  • Kerry N, Rice-Evans C (1999) Inhibition of peroxynitrite-mediated oxidation of dopamine by flavonoid and phenolic antioxidants and their structural relationships. J Neurochem 73: 247–253

    Article  PubMed  CAS  Google Scholar 

  • Kumamoto M, Sonda T, Nagayama K, Tabata M (2001) Effects of pH and metal ions on antioxidative activities of catechins. Biosci Biotechnol Biochem 65: 126–132

    Article  PubMed  CAS  Google Scholar 

  • Lee JW, Bae SH, Jeong JW, Kim SH, Kim KW (2004) Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med 36: 1–12

    PubMed  Google Scholar 

  • Leissring MA, Murphy MP, Mead TR, Akbari Y, Sugarman MC, Jannatipour M, Anliker B, Muller U, Saftig P, De Strooper B, Wolfe MS, Golde TE, LaFerla FM (2002) A physiologic signaling role for the gamma-secretase-derived intracellular fragment of APP. Proc Natl Acad Sci USA 99: 4697–4702

    Article  PubMed  CAS  Google Scholar 

  • Levites Y, Amit T, Youdim MBH, Mandel S (2002) Involvement of protein kinase C activation and cell survival=cell cycle genes in green tea polyphenol (−)-epigallocatechin-3-gallate neuroprotective action. J Biol Chem 277: 30574–30580

    Article  PubMed  CAS  Google Scholar 

  • Levites Y, Amit T, Mandel S, Youdim MBH (2003) Neuroprotection and neurorescue against amyloid beta toxicity and PKC-dependent release of non-amyloidogenic soluble precusor protein by green tea polyphenol (−)-epigallocatechin-3-gallate. Faseb J 17: 952–954

    PubMed  CAS  Google Scholar 

  • Linazasoro G (2002) Neuroprotection in Parkinson’s disease: love story or mission impossible? Expert Rev Neurotherapeutics 2: 403–416

    Article  Google Scholar 

  • Mandel S, Youdim MBH (2004) Catechin polyphenols: neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radical Bio Med 37: 304–317

    Article  CAS  Google Scholar 

  • Mandel S, Maor G, Youdim MBH (2004a) Iron and alpha-synuclein in the substantia nigra of MPTP-treated mice: effect of neuroprotective drugs R-apomorphine and green tea polyphenol (−)-epigallocatechin-3-gallate. J Mol Neurosci 24: 401–416

    Article  PubMed  CAS  Google Scholar 

  • Mandel S, Weinreb O, Amit T, Youdim MBH (2004b) Cell Signaling Pathways in the Neuroprotective Actions of the Green Tea Polyphenol (−)-Epigallocatechin-3-Gallate: Implications for Neurodegenerative Diseases. J Neurochem 88: 1555–1569

    Article  PubMed  CAS  Google Scholar 

  • Mandel SA, Avramovich-Tirosh Y, Reznichenko L, Zheng H, Weinreb O, Amit T, Youdim MBH (2005) Multifunctional activities of green tea catechins in neuroprotection. Neurosignals 14: 46–60

    Article  PubMed  CAS  Google Scholar 

  • Marambaud P, Zhao H, Davies P (2005) Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J Biol Chem 280: 37377–37382

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP (1997) Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev 77: 1081–1132

    PubMed  CAS  Google Scholar 

  • McNaught KS, Belizaire R, Jenner P, Olanow CW, Isacson O (2002) Selective loss of 20S proteasome alpha-subunits in the substantia nigra pars compacta in Parkinson’s disease. Neurosci Lett 326: 155–158

    Article  PubMed  CAS  Google Scholar 

  • Meade TW (1975) Subacute myelo-optic neuropathy and clioquinol. An epidemiological case-history for diagnosis. Br J Prev Soc Med 29: 157–169

    PubMed  CAS  Google Scholar 

  • Morel I, Lescoat G, Cogrel P, Sergent O, Pasdeloup N, Brissot P, Cillard P, Cillard J (1999) Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochem Pharmacol 45: 13–19

    Article  Google Scholar 

  • Nakagawa K, Miyazawa T (1997) Absorption and distribution of tea catechin, (−)-epigallocatechin-3-gallate, in the rat. J Nutr Sci Vitaminol (Tokyo) 43: 679–684

    PubMed  CAS  Google Scholar 

  • Ono K, Hasegawa K, Naiki H, Yamada M (2004) Anti-amyloidogenic activity of tannic acid and its activity to destabilize Alzheimer’s betaamyloid fibrils in vitro. Biochim Biophys Acta 1690: 193–202

    PubMed  CAS  Google Scholar 

  • Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M (2003) Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease. J Neurochem 87: 172–181

    Article  PubMed  CAS  Google Scholar 

  • Pannala AS, Razaq R, Halliwell B, Singh S, Rice-Evans CA (1998) Inhibition of peroxynitrite dependent tyrosine nitration by hydroxycinnamates: nitration or electron donation? Free Radical Bio Med 24: 594–606

    Article  CAS  Google Scholar 

  • Payton S, Cahill CM, Randall JD, Gullans SR, Rogers JT (2003) Drug discovery targeted to the Alzheimer’s APP mRNA 5′-untranslated region: the action of paroxetine and dimercaptopropanol. J Mol Neurosci 20: 267–275

    Article  PubMed  CAS  Google Scholar 

  • Poon HF, Shepherd HM, Reed TT, Calabrese V, Stella AM, Pennisi G, Cai J, Pierce WM, Klein JB, Butterfield DA (2005) Proteomics analysis provides insight into caloric restriction mediated oxidation and expression of brain proteins associated with age-related impaired cellular processes: Mitochondrial dysfunction, glutamate dysregulation and impaired protein synthesis. Neurobiol Ageing: Epub ahead of print

    Google Scholar 

  • Rezai-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton D, Ehrhart J, Townsend K, Zeng J, Morgan D, Hardy J, Town T, Tan J (2005) Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 25: 8807–8814

    Article  PubMed  CAS  Google Scholar 

  • Reznichenko L, Amit T, Youdim MBH, Mandel S (2005) Green tea polyphenol (−)-epigallocatechin-3-gallate induces neurorescue of long-term serum-deprived PC12 cells and promotes neurite outgrowth. J Neurochem 93: 1157–1167

    Article  PubMed  CAS  Google Scholar 

  • Reznichenko L, Amit T, Zheng H, Weinreb O, Avramovich-Tirosh Y, Youdim MBH, Mandel S (2006) Reduction of the iron-regulated beta-amyloid precursor protein and toxic beta-amyloid peptides expression by green tea polyphenol (−)-epigallocatechin-3-gallate: implication of iron chelation in Alzheimer’s disease. J Neurochem 97: 27–36

    Article  CAS  Google Scholar 

  • Rice-Evans C (2001) Flavonoid antioxidants. Curr Med Chem 8: 797–807

    PubMed  CAS  Google Scholar 

  • Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MBH (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52: 515–520

    Article  PubMed  CAS  Google Scholar 

  • Rogers JT, Lahiri DK (2004) Metal and inflammatory targets for Alzheimer’s disease. Curr Drug Targets 5: 535–551

    Article  PubMed  CAS  Google Scholar 

  • Rogers JT, Randall JD, Cahill CM, Eder PS, Huang X, Gunshin H, Leiter L, McPhee J, Sarang SS, Utsuki T, Greig NH, Lahiri DK, Tanzi RE, Bush AI, Giordano T, Gullans SR (2002) An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript. J Biol Chem 277: 45518–45528

    Article  PubMed  CAS  Google Scholar 

  • Schroeter H, Boyd C, Spencer JP, Williams RJ, Cadenas E, Rice-Evans C (2002) MAPK signaling in neurodegeneration: influences of flavonoids and of nitric oxide. Neurobiol Ageing 23: 861–880

    Article  CAS  Google Scholar 

  • Sharp FR, Bernaudin M (2004) HIF1 and oxygen sensing in the brain. Nat Rev Neurosci 5: 437–448

    Article  PubMed  CAS  Google Scholar 

  • Sipe JC, Lee P, Beutler E (2002) Brain iron metabolism and neurodegenerative disorders. Dev Neurosci 24: 188–196

    Article  PubMed  CAS  Google Scholar 

  • Sorond FA, Ratan RR (2000) Ironing-out mechanisms of neuronal injury under hypoxic-ischemic conditions and potential role of iron chelators as neuroprotective agents. Antioxidants and Redox Signaling 2: 421–436

    Article  PubMed  CAS  Google Scholar 

  • Suganuma M, Okabe S, Oniyama M, Tada Y, Ito H, Fujiki H (1998) Wide distribution of [3H](−)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis 19: 1771–1776.

    Article  PubMed  CAS  Google Scholar 

  • Templeton DM, Liu Y (2003) Genetic regulation of cell function in response to iron overload or chelation. Biochim Biophys Acta 1619: 113–124

    PubMed  CAS  Google Scholar 

  • Thomas R, Kim MH (2005) Epigallocatechin gallate inhibits HIF-1alpha degradation in prostate cancer cells. Biochem Biophys Res Commun 334: 543–548

    Article  PubMed  CAS  Google Scholar 

  • Tournaire C, Croux S, Maurette MT, Beck I, Hocquaux M, Braun AM, Oliveros E (1993) Antioxidant activity of flavonoids: efficiency of singlet oxygen (1 delta g) quenching. Journal of Photochemistry and Photobiology B 19: 205–215

    Article  CAS  Google Scholar 

  • Townsend PA, Scarabelli TM, Davidson SM, Knight RA, Latchman DS, Stephanou A (2004) STAT-1 interacts with p53 to enhance DNA damage-induced apoptosis. J Biol Chem 279: 5811–5820

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Chen G, Muckenthaler M, Galy B, Hentze MW, Pantopoulos K (2004) Iron-mediated degradation of IRP2, an unexpected pathway involving a 2-oxoglutarate-dependent oxygenase activity. Mol Cell Biol 24: 954–965

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Huang MT, Lou YR, Xie JG, Reuhl KR, Newmark HL, Ho CT, Yang CS, Conney AH (1994) Inhibitory effects of black tea, green tea, decaffeinated black tea, and decaffeinated green tea on ultraviolet B light-induced skin carcinogenesis in 7,12-dimethylbenz [a]anthracene-initiated SKH-1 mice. Cancer Res 54: 3428–3455

    PubMed  CAS  Google Scholar 

  • Weinreb O, Mandel S, Youdim MBH (2003) cDNA gene expression profile homology of antioxidants and their anti-apoptotic and pro-apoptotic activities in human neuroblastoma cells. Faseb J 17: 935–937

    PubMed  CAS  Google Scholar 

  • Wiseman S, Mulder T, Rietveld A (2001) Tea flavonoids: bioavailability in vivo and effects on cell signaling pathways in vitro. Antioxid Redox Signal 3: 1009–1021

    Article  PubMed  CAS  Google Scholar 

  • Wiseman SA, Balentine DA, Frei B (1997) Antioxidants in tea. Crit Rev Food Sci Nutr 37: 705–718

    Article  PubMed  CAS  Google Scholar 

  • Yang CS, Wang ZY (1993) Tea and cancer. J Natl Cancer Inst 85: 1038–1049.

    PubMed  CAS  Google Scholar 

  • Youdim MBH, Riederer P (2004) Iron in the brain, normal and pathological, In: Adelman G, Smith B (eds) Encyclopedia of Neuroscience, Elsevier

    Google Scholar 

  • Youdim MBH, Buccafusco JJ (2005) Multi-functional Drugs for Various CNS Targets in the Treatment of Neurodegenerative Disorders. Trends Pharmacol Sci 26: 27–35

    Article  PubMed  CAS  Google Scholar 

  • Youdim MBH, Fridkin M, Zheng H (2004) Novel bifunctional drugs targeting monoamine oxidase inhibition and iron chelation as an approach to neuroprotection in Parkinson’s disease and other neurodegenerative diseases. J Neural Transm 111: 1455–1471

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Youdim MBH, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5: 863–873

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, James M, Middleton FA, Davis RL (2005) Transcriptional analysis of multiple brain regions in Parkinson’s disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms. Am J Med Genet B Neuropsychiatr Genet 137: 5–16

    PubMed  Google Scholar 

  • Zheng H, Gal S, Weiner LM, Bar-Am O, Warshawsky A, Fridkin M, Youdim MBH (2005a) Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases: in vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition. J Neurochem 95: 68–78

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, Weiner LM, Bar-Am O, Epsztejn S, Cabantchik ZI, Warshawsky A, Youdim MBH, Fridkin M (2005b) Design, synthesis, and evaluation of novel bifunctional iron-chelators as potential agents for neuroprotection in Alzheimer’s, Parkinson’s, and other neurodegenerative diseases. Bioorg Med Chem 13: 773–783

    Article  PubMed  CAS  Google Scholar 

  • Zhou YD, Kim YP, Li XC, Baerson SR, Agarwal AK, Hodges TW, Ferreira D, Nagle DG (2004) Hypoxia-inducible factor-1 activation by (−)-epicatechin gallate: potential adverse effects of cancer chemoprevention with high-dose green tea extracts. J Nat Prod 67: 2063–2069

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this chapter

Cite this chapter

Mandel, S., Weinreb, O., Reznichenko, L., Kalfon, L., Amit, T. (2006). Green tea catechins as brain-permeable, non toxic iron chelators to “iron out iron” from the brain. In: Parvez, H., Riederer, P. (eds) Oxidative Stress and Neuroprotection. Journal of Neural Transmission. Supplementa, vol 71. Springer, Vienna. https://doi.org/10.1007/978-3-211-33328-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-33328-0_26

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-33327-3

  • Online ISBN: 978-3-211-33328-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics