Skip to main content

Part of the book series: EXS ((EXS,volume 76))

  • 1391 Accesses

Abstract

Proper functioning of the heart depends, among others, on an unimpeded supply of molecular oxygen. The oxygen is used for the oxidation of substrates, mainly glucose and fatty acids, in the mitochondrial matrix. Fatty acids are supplied to the heart from the blood compartment, either complexed to albumin or esterified in triacylglycerol-containing lipoproteins, such as chylomicrons and very low density lipoproteins (Fig. 1). In addition to serving as substrates in oxidative metabolic processes, fatty acids are incorporated in phospholipids, important building blocks of cellular membranes, and in triacylglycerols, the intracellular store of fatty acids. A minor part of fatty acids, in particular arachidonic acid, serves as precursor of biological active compounds [1]. Recent findings strongly suggest that fatty acids themselves can exert regulating effects on ion transport and gene expression in parenchymal cells [2]. Prior to transport through the endothelial cells (via an incompletely understood mechanism), fatty acids are released from the albumin-fatty acid complex or hydrolysed from the triacylglycerol core of the circulating lipoproteins by lipoprotein lipase (Fig. 1). The latter enzyme is attached to the luminal side of the endothelial membrane. After albumin-mediated diffusion through the interstitial space, fatty acids are transferred across the sarcolemma of the cardiomyocytes by diffusion through the lipid bilayer and/or via a protein-mediated transport mechanism [1]. At present, at least three different proteins have been suggested for a role in transmembrane trafficking of fatty acyl moieties [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Van der Vusse GJ, Glatz JFC, Stam HCG, Reneman RS. Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev 1992; 1: 881–940.

    Google Scholar 

  2. Van Bilsen M, Van der Vusse GJ. Phospholipase A2 dependent signalling in the heart. Cardiovasc Res 1995; 30: 518–529.

    PubMed  Google Scholar 

  3. Van Bilsen M, Van der Vusse GJ. Phospholipase A2 dependent signalling in the heart. Cardiovasc Res 1995; 30: 518–529.

    PubMed  Google Scholar 

  4. Van der Vusse GJ, Roemen THM, Prinzen FW, Coumans WA, Reneman RS. Uptake and tissue content of fatty acids in dog myocardium under normoxic and ischemic conditions. Circ Res 1982; 50: 538–46.

    PubMed  Google Scholar 

  5. Opie LE, Owen P, Riemersma RA. Relative rates of oxidation of glucose and free fatty acids by ischaemic and non−ischaemic myocardium after coronary artery ligation in the dog. Eur J Clin Invest 1973; 3: 419–35.

    Article  PubMed  CAS  Google Scholar 

  6. Moore KH. Fatty acid oxidation in ischemic heart. Mol Physiol 1985; 8: 549–63.

    CAS  Google Scholar 

  7. Neely JR, Garber DK, McDonough K, Idell-Wenger J. Relationship between ventricular function and intermediates of fatty acid metabolism during myocardial ischemia: effects of carnitine. In: MM Winbury and Y Abiko, editors: Ischemic myocardium and antianginal drugs. Persp Cardiovasc Res vol 3, New York: Raven Press, 1979: 225–39.

    Google Scholar 

  8. Neely JR, Feuvray D. Metabolic products and myocardial ischemia. Am J Pathol 1981; 102: 282–91.

    PubMed  CAS  Google Scholar 

  9. Corr PB, Snyder DW, Lee BI, Gross RW, Keim CR, Sobel BE. Pathophysiological concentrations of lysophosphatides and the slow response. Am J Physiol 1982; 243: H187–95.

    PubMed  CAS  Google Scholar 

  10. Gross RW, Drisdel RC, Sobel BE. Rabbit myocardial lysophospholipase-transacylase. Purification, characterization and inhibition by endogenous cardiac amphiphiles. J Biol Chem 1983; 258: 15165–72.

    PubMed  CAS  Google Scholar 

  11. Gross RW, Sobel BE. Rabbit myocardial cytosolic lysophospholipase. Purification, characterization, and competitive inhibition by L-palmitoyl carnitine. J Biol Chem 1983; 258: 5221–6.

    PubMed  CAS  Google Scholar 

  12. Lamers JMJ, Stinis JT, Montfoort A, Hülsmann WC. The effect of lipid intermediates on Ca++ and Na+ permeability and (Na+/K+)-ATPase of cardiac sarcolemma. Biochim Biophys Acta 1984; 774: 127–37.

    Article  PubMed  CAS  Google Scholar 

  13. Chien KR, Han A, Sen A, Buja LM, Willerson JT. Accumulation of unesterified arachidonic acid in ischemic canine myocardium. Circ Res 1984; 54: 313–22.

    PubMed  CAS  Google Scholar 

  14. Van Bilsen M, Van der Vusse GJ, Willemsen PHM, Coumans WA, Roemen THM, Reneman RS. Lipid alterations in isolated, working rat hearts during ischemia and reperfusion: Its relation to myocardial damage. Circ Res 1989; 64: 304–14.

    PubMed  Google Scholar 

  15. Schwaiger M, Schelbert HR, Keen R, Vinten-Johansen J, Hansen H, Selin C, Barrio J, Huang SC, Phelps ME. Retention and clearance of C-11 palmitic acid in ischemic and reperfused canine myocardium. J Am Coll Cardiol 1985; 6: 311–20.

    Article  PubMed  CAS  Google Scholar 

  16. Lopaschuk GD, Spaffort MA, Davies NJ, Wall SR. Glucose and palmitate oxidation in isolated working rat hearts reperfused after a period of transient global ischemia. Circ Res 1990; 66: 546–53.

    PubMed  CAS  Google Scholar 

  17. Lerch R, Tamm E, Papageorgiou I, Benzi RH. Myocardial fatty acid oxidation during ischemia and reperfusion. Mol Cell Biochem 1992; 116: 103–9.

    Article  PubMed  CAS  Google Scholar 

  18. Van Bilsen M, Van der Vusse GJ, Willemsen PHM, Coumans WA, Reneman RS. Fatty acid accumulation during ischemia and reperfusion: Effects of pyruvate and POCA, a carnitine palmitoyltransferase I inhibitor. J Mol Cell Cardiol 1991; 23: 1437–47.

    Article  PubMed  Google Scholar 

  19. De Groot MJM, Coumans WA, Willemsen PHM, Van der Vusse GJ. Substrate-induced changes in lipid content of ischemic and reperfused myocardium. Its relation to hemodynamic recovery. Circ Res 1993; 72: 176–86.

    PubMed  Google Scholar 

  20. Van der Vusse GJ, Van Bilsen M, Reneman RS. Alterations in membrane phospholipids during ischemia and reperfusion. In: M Hori, Y Maruyama and RS Reneman, editors: Cardiac adaptation and failure. Berlin: Springer, 1994: 101–17.

    Google Scholar 

  21. Van der Vusse GJ, Reneman RS. Glycogen and Lipids (endogenous substrates). In: AJ Drake-Holland and MIM Noble, editors: Cardiac Metabolism, Chichester: Wiley and Sons, 1983: 215–37.

    Google Scholar 

  22. Saddick M, Lopaschuk GD. Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts. J Biol Chem 1991; 266: 8162–70.

    Google Scholar 

  23. Friedman PL, Fenoglio JJ, Wit AL. Time course for reversal of electrophysiological and ultrastructural abnormalities in subendocardial Purkinje fibers surviving extensive myocardial infarction in dogs. Circ Res 1975; 36: 127–43.

    PubMed  CAS  Google Scholar 

  24. Heathers GP, Brunt PV. The effect of coronary artery occlusion and reperfusion on the activation of triglyceride lipase and glycerol-3-phosphate acyl transferase in the isolated perfused rat heart. J Mol Cell Cardiol 1985; 17: 907–16.

    Article  PubMed  CAS  Google Scholar 

  25. Schoonderwoerd K, Broekhoven-Schokker S, Hülsmann WC, Stam H. Enhanced lipolysis of myocardial triglycerides during low-flow ischemia and anoxia in the isolated rat heart. Basic Res Cardiol 1989; 84: 165–73.

    Article  PubMed  CAS  Google Scholar 

  26. Saddik M, Lopaschuk GD. Myocardial triglyceride turnover during reperfusion of isolated rat hearts subjected to a transient period of global ischemia. J Biol Chem 1992; 267: 3825–31.

    PubMed  CAS  Google Scholar 

  27. Post JA, Langer GA, Op den Kamp JAF, Verkley AJ. Phospholipid asymmetry in cardiac sarcolemma. Analysis of intact cells and gas dissected membranes. Biochim Biophys Acta 1988; 943: 256–66.

    Article  PubMed  CAS  Google Scholar 

  28. Gross RW. Myocardial phospholipases A2 and their membrane substrates. Trends Cardiovasc Med 1992; 2: 115–21.

    Article  PubMed  CAS  Google Scholar 

  29. Kramer RM, Hession C, Johansen B, Hayes G, McGray P, Pingchang E, Tizard R, Pepinsky RB. Structure and properties of a human non-pancreatic phospholipase A2. J Biol Chem 1989; 264: 5768–75.

    PubMed  CAS  Google Scholar 

  30. Sharp JD, White DL. Cytosolic PLA2: mRNA levels and potential for transcriptional regulation. J Lip Mediators 1993; 8: 183–9.

    CAS  Google Scholar 

  31. Narasimhan V, Holowka D, Baird B. A guanine nucleotide-binding protein participates in IgE receptor-mediated activation of endogenous and reconstituted phospholipase A2 in a permeabilized cell system. J Biol Chem 1990; 265: 1459–64.

    PubMed  CAS  Google Scholar 

  32. Weglicki WB, Owens K, Urschel CW, Serur JR, Sonnenblick EH. Hydrolysis of myocardial lipids during acidosis and ischemia. Ree Adv Stud Cardiac Struct Metab 1973; 3: 781–93.

    CAS  Google Scholar 

  33. Prinzen FW, Van der Vusse GJ, Arts T, Roemen THM, Coumans WA, Reneman RS. Accumulation of nonesterified fatty acids in ischemic canine myocardium. Am J Physiol 1984; 247: H264–72.

    PubMed  CAS  Google Scholar 

  34. Yanagishita T, Konno N, Geshi E, Katagiri T. Alterations in phospholipids in acute ischemic myocardium. Jpn Circ J 1987; 51: 41–50.

    Article  PubMed  CAS  Google Scholar 

  35. Victor T, Van der Merwe N, Benade AJS, La Cock C, Lochner A. Mitochondrial phospholipid composition and microviscosity in myocardial ischemia. Biochim Biophys Acta 1985; 834: 215–23.

    PubMed  CAS  Google Scholar 

  36. Miyazaki Y, Gross RW, Sobel BE, Saffitz JE. Selective turnover of sarcolemmal phospholipids with lethal cardiac myocyte injury. Am J Physiol 1990; 259: C325–31.

    PubMed  CAS  Google Scholar 

  37. Suyatna FD, Van Veldhoven PP, Borgers M, Mannaerts GP. Phospholipid composition and amphiphile content of isolated sarcolemma from normal and autolytic rat myocardium. J Mol Cell Cardiol 1988, 20: 47–62.

    Article  PubMed  CAS  Google Scholar 

  38. Lochner A, De Villiers M. Phosphatidylcholine biosynthesis in myocardial ischaemia. J Mol Cell Cardiol 1989; 21: 151–63.

    Article  PubMed  CAS  Google Scholar 

  39. Jones RL, Miller JC, Hagler HK, Chien KR, Willerson JT, Buja LM. Association between inhibition of arachidonic acid release and prevention of calcium loading during ATP depletion in cultured rat cardiac myocytes. Am J Pathol 1989; 135: 541–56.

    PubMed  CAS  Google Scholar 

  40. Das DK, Engelman RM, Rousou JA, Breyer RH, Otani H, Lemeshow S. Role of membrane phospholipids in myocardial injury induced by ischemia and reperfusion. Am J Physiol 1986; 251: H71–9.

    PubMed  CAS  Google Scholar 

  41. Prasad MR, Popescu LM, Moraru II, Liu X, Maity S, Engelman RM, Das DK. Role of phospholipases A2 and C in myocardial ischemic reperfusion injury. Am J Physiol 1991; 260: H877–83.

    PubMed  CAS  Google Scholar 

  42. Bentham JM, Higgins AJ, Woodward B. The effects of ischaemia, lysophosphatidylcholine and palmitoylcarnitine on rat heart phospholipase A2 activity. Basic Res Cardiol 1987; 82: 127–37.

    PubMed  CAS  Google Scholar 

  43. Hazen SL, Ford DA, Gross RW. Activation of a membrane associated phospholipase A2 during rabbit myocardial ischemia which is highly selective for plasmalogen substrate. J Biol Chem 1991; 266: 5629–33.

    PubMed  CAS  Google Scholar 

  44. Davies NJ, Schulz R, Olley PM, Strynadka KD, Panas DL, Lopaschuk GD. Lysoplasmenylethanolamine accumulation in ischemic/reperfused isolated fatty acid-perfused hearts. Circ Res 1992; 70: 1161–8.

    PubMed  CAS  Google Scholar 

  45. Clark MA, Conway TM, Shorr RGL, Crooke ST. Identification and isolation of a mammalian protein which is antigenically and functionally related to the phospholipase A2 stimulatory peptide melittin. J Biol Chem 1987; 262: 4402–6.

    PubMed  CAS  Google Scholar 

  46. Jans SWS, Van Bilsen M, Reutelingsperger CPM, Borgers M, De Jong YF, Van der Vusse GJ. Annexin V in the adult rat heart: isolation, localization and quantification. J Mol Cell Cardiol 1995; 27: 335–48.

    Article  PubMed  CAS  Google Scholar 

  47. Van Bilsen M, Reutelingsperger CPM, Willemsen PHM, Reneman RS, Van der Vusse GJ. Annexins in cardiac tissue: cellular localization and effect on phospholipase activity. Mol Cell Biochem 1992; 116: 95–101.

    Article  PubMed  Google Scholar 

  48. Weglicki WB, Low MG. Phospholipases of the myocardium. Basic Res Cardiol 1987; 87 (Suppl 1): 107 - 12.

    Google Scholar 

  49. Schrijvers AHGJ, De Groot MJM, Heynen VVTh, Van der Vusse GJ, Frederik PM, Reneman RS. Ischemia and reperfusion induced multilamellar vesicles in isolated rabbit hearts: Time correlation between morphometric data and metabolic alterations. J Mol Cell Cardiol 1990; 22: 653–65.

    Article  PubMed  CAS  Google Scholar 

  50. Musters RJP, Post JA, Verkleij AJ. The isolated neonatal rat-cardiomyocyte used in an in vitro model for ischemia. I. A morphological study. Biochim Biophys Acta 1991; 1091: 270–7.

    Article  PubMed  CAS  Google Scholar 

  51. Musters RJP, Otten E, Biegelmann E, Bijvelt J, Keijzer JH, Post JA, Op den Kamp JAF, Verkleij AF. Loss of asymmetric distribution of sarcolemmal phosphatidylethanolamine during simulated ischemia in the isolated neonatal rat cardiomyocyte. Circ Res 1993; 73: 514–23.

    PubMed  CAS  Google Scholar 

  52. Verkleij AJ, Post JA. Physico-chemical properties and organization of lipids in membranes: their possible role in myocardial injury. Basic Res Cardiol 1987; 82 (1): 85–91.

    PubMed  CAS  Google Scholar 

  53. Ganote CE, Van der Heide RS. Importance of mechanical factors in ischemic and reperfusion injury. In: HM Piper, editor: Pathophysiology of severe ischemic myocardial injury. Dordrecht: Kluwer Academic Publishers, 1990: 337–55.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

van der Vusse, G.J., van Bilsen, M., Jans, S.W.S., Reneman, R.S. (1996). Lipid metabolism in the ischemic and reperfused heart. In: Karmazyn, M. (eds) Myocardial Ischemia: Mechanisms, Reperfusion, Protection. EXS, vol 76. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8988-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8988-9_11

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9857-7

  • Online ISBN: 978-3-0348-8988-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics