Skip to main content

Course control and tracking: Orientation through image stabilization

  • Chapter
Orientation and Communication in Arthropods

Part of the book series: EXS ((EXS,volume 84))

Summary

Course control and tracking are based on visual detection of the position and movement of objects. A disadvantage of biological movement detectors is that they cannot provide a signal proportional to the speed at which the image of an object moves over the retina. Other image parameters, such as brightness, contrast, and texture, strongly affect the magnitude of the detectors’ output signals. To function well, the optomotor control circuit must solve these problems. One possible solution, realized in Diptera, is the principle of “gain control by feedback oscillations” described in this chapter.

The optomotor system serves for course control by stabilizing the image of the visual panorama on the eye, and for tracking a moving object by stabilizing the object’s image on the eye. When an object moves in front of a structured background, it is impossible for the images of both object and background to be stabilized simultaneously. Arthropods and vertebrates usually employ the same strategy to cope with this problem: saccadic tracking. In Diptera, the neural substrate for saccadic tracking is partially understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bilo, D. (1992) Optocollic reflexes and neck flexion-related activity of flight control muscles in the airflow-stimulated pigeon. In: A. Berthoz, W. Graf and P. Vidal (eds):The Head-Neck Sensory-Motor System. Oxford University Press, New York, Oxford, pp. 96–100.

    Chapter  Google Scholar 

  • Borst, A. and Egelhaaf, M. (1987) Temporal modulation of luminance adapts time constant of fly movement detectors. Biol. Cybern. 56:209–215.

    Article  Google Scholar 

  • Borst, A. and Egelhaaf, M. (1992) In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation. Proc. Natl. Acad. Sei. USA 89:4139–4143.

    Article  CAS  Google Scholar 

  • Briggs, B.H., Phillips, G.J. and Shinn, D.H. (1950) The analysis of observations on spaced receivers of the fading of radio signals. Proc. Phys. Soc. 63:106–121.

    Article  Google Scholar 

  • Buchner, E. (1984) Behavioural analysis of spatial vision in insects. In: M.A. Ali (ed.):Photo-reception and Vision in Invertebrates. Plenum Press, New York, London, pp 561–621.

    Chapter  Google Scholar 

  • Collett, T.S., Nalbach, H.O. and Wagner, H. (1993) Visual stabilization in arthropods. In: F.A. Miles and J. Wallman (eds):Visual Motion and its Role in the Stabilization of Gaze. Elsevier Science Publishers B.V., Amsterdam, pp 239–264.

    Google Scholar 

  • David, C.T. (1982) Compensation for height in the control of groundspeed by Drosophila in a new,“Barber’s Pole”wind tunnel. J. Comp. Physiol. 147:485–493.

    Article  Google Scholar 

  • Eckert, H. and Hamdorf, K. (1981) The contrast frequency dependence:A criterion for judging the non-participation of neurones in the control of behavioural responses. J. Comp. Physiol. 145:241–247.

    Article  Google Scholar 

  • Egelhaaf, M. (1985) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. III. Possible input circuitries and behavioural significance of the FD-cells. Biol. Cybern. 52:267–280.

    Article  Google Scholar 

  • Egelhaaf, M. (1990) Spatial interactions in the fly visual system leading to selectivity for small-field motion. Naturwissens. 77:182–185.

    Article  Google Scholar 

  • Egelhaaf, M. and Borst, A. (1989) Transient and steady-state response properties of movement detectors. J. Opt. Soc. Am. A 6:116–127.

    Article  CAS  Google Scholar 

  • Egelhaaf, M. and Borst, A. (1993) Motion computation and visual orientation in flies. Comp. Biochem. Physiol. 104A:659–673.

    Article  Google Scholar 

  • Egelhaaf, M., Hausen, K., Reichardt, W. and Wehrhahn, C. (1988) Visual course control in flies relies on neuronal computation of object and background motion. TINS 8:351–358.

    Google Scholar 

  • Egelhaaf, M., Borst, A. and Reichardt, W. (1989) Computational structure of a biological motion detection system as revealed by local detector analysis in the fly’s nervous system. J. Opt. Soc. Am. A 6:1070–1087.

    Article  CAS  Google Scholar 

  • Götz, K.G. (1964) Optomotorische Untersuchungen des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2:77–92.

    Article  PubMed  Google Scholar 

  • Graaf, B., de, Wertheim, A.H., Bles, W. and Kremers, J. (1990) Angular velocity, not temporal frequency, determines circular vection. Vision Res. 30:637–646.

    Article  PubMed  Google Scholar 

  • Hassenstein, B. und Reichardt, W. (1956) Systemtheoretische Analyse der Zeit-, Reihenfolgen-und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Clorophanus. Z.Naturf. llb:513–524.

    Google Scholar 

  • Hausen, K. (1984) The lobula-complex of the fly:structure, function and significance in visual behaviour. In: M.A. Ali (ed.):Photoreception and Vision in Invertebrates. Plenum Press, New York, pp 523–559.

    Chapter  Google Scholar 

  • Hausen, K. and Wehrhahn, C. (1990) Neural circuits mediating visual flight control in flies. II. Separation of two control systems by microsurgical brain lesions. J. Neurosci. 10:351–360.

    PubMed  CAS  Google Scholar 

  • Heisenberg, M. and Wolf, R. (1984) Vision in Drosophila. Springer-Verlag, Berlin, Heidelberg, New York.

    Book  Google Scholar 

  • I1g, U.J., Brenner, F., Thiele, A. and Hoffmann, K.P. (1992) Neuronal coding of retinal slip during smooth pursuit eye movements. Eur. J. Neurosci. (Suppl.) 5:253.

    Google Scholar 

  • Kelly, D.H. (1979) Motion and vision. II. Stabilized spatio-temporal threshold surface. J. Opt. Soc. Am. 69:1340–1349.

    Article  PubMed  CAS  Google Scholar 

  • Kirschfeld, K. (1989) Automatic gain control in movement detection of the fly. Naturwissens. 76:378–380.

    Article  Google Scholar 

  • Kirschfeld, K. (1991) An optomotor control system with automatic compensation for contrast and texture. Proc. R. Soc. Lond. B 246:261–268.

    Article  CAS  Google Scholar 

  • Kirschfeld, K. (1994) Tracking of small objects in front of a textured background by insects and vertebrates:phenomena and neuronal basis. Biol. Cybern. 70:407–415.

    Article  PubMed  CAS  Google Scholar 

  • Kunze, P. (1961) Untersuchung des Bewegungssehens fixiert fliegender Bienen. Z. vergl. Physiol. 44:656–684.

    Article  Google Scholar 

  • Land, M. (1992) Visual tracking and pursuit:humans and arthropods compared. J. Insect Physiol. 38:939–951.

    Article  Google Scholar 

  • Lehrer, M. and Srinivasan, M.V. (1992) Freely flying bees discriminate between stationary and moving objects:Performance and possible mechanisms. J. Comp. Physiol. A 171:457–467.

    Article  Google Scholar 

  • Metzger, W. (1975) Gesetze des Sehens. Waldemar Kramer Verlag, Frankfurt/M.

    Google Scholar 

  • Miles, F.A. and Kawano, K. (1987) Visual stabilization of the eyes. Trends Neurosci. 10:153–158.

    Google Scholar 

  • Radl, E. (1903) Untersuchungen über den Phototropismus der Tiere. W. Engelmann, Leipzig.

    Google Scholar 

  • Reichardt, W. and Poggio, T. (1979) Figure-ground discrimination by the relative movement in the visual system of the fly. (Part I:Experimental results). Biol. Cybern. 35:81–100.

    Article  Google Scholar 

  • Reichardt, W. and Varjú, D. (1959) Übertragungseigenschaften im Auswertesystem für das Bewegungssehen (Folgerungen aus Experimenten an dem Rüsselkäfer Chlorophanus viridis). Z. Naturf. 14b:674–689.

    CAS  Google Scholar 

  • Reichardt, W., Poggio, T. and Hausen, K. (1983) Figure-ground discrimination by relative movement in the visual system of the fly. (Part II:Towards the neural circuitry). Biol. Cybern. (Suppl.)46:l-30.

    Google Scholar 

  • Rossel, S. (1980) Foveal fixation and tracking in the praying mantis. J. Comp. Physiol. 139:307–331.

    Article  Google Scholar 

  • Ruyter van Steveninck, R.R., de, Zaagman, W.H. and Mastebroek, H.A.K. (1986) Adaptation of transient responses of a movement-sensitive neuron in the visual system of the blowfly Calliphora erythrocephala. Biol. Cyern. 53:451–463.

    Google Scholar 

  • Sandeman, D.C. (1978) Eye-scanning during walking in the crab. J. Comp. Physiol. 124:249–257.

    Article  Google Scholar 

  • Schaerer, S., Feiler, R. and Kirschfeld, K. (1996) Object perception in goldfish. Proc. 24th Göttingen Neurobiology Conf, Vol. II. Thieme-Verlag, Stuttgart, New York, p 386.

    Google Scholar 

  • Srinivasan, M.V, Lehrer, M., Kirchner, W.H. and Zhang, S. W. (1991) Range perception through apparent image speed in freely flying honeybees. Vis Neurosci. 6:519–535.

    Article  PubMed  CAS  Google Scholar 

  • Türke, W. (1996) Die Eigenschaften der Eingangselemente des akzessorisch optischen Systems der Taube (Columba livia). PhD Thesis, Universität Tübingen.

    Google Scholar 

  • Varjü, D (1959) Optomotorische Reaktionen auf die Bewegung periodischer Helligkeitsmuster (Anwendung der Systemtheorie auf Experimente am Rüsselkäfer Chlorophanus viridis). Z. Naturf. 14b:724–735.

    Google Scholar 

  • Varjü, D. and Reichardt, W. (1967) Übertragungseigenschaften im Auswertesystem für das Bewegungssehen II (Folgerungen aus Experimenten an dem Rüsselkäfer Chlorophanus viridis). Z. Naturf. 22b, 12:1343–1351.

    Google Scholar 

  • Wagner, H. (1986) Flight performance and visual control of flight of the freeflying housefly (Musca domestica L.) III. Interactions between angular movement induced by wide-and smallfield stimuli. Phil. Trans. R. Soc. Lond. (Biol) 312:581–595.

    Article  Google Scholar 

  • Wehrhahn, C. (1985) Visual guidance of flies during flight. In: G.A. Kerkut and L.I. Gilbert (eds):Comprehensive Insect Physiology Biochemistry and Pharmacology. Pergamon Press, Oxford, New York, pp 673–684.

    Google Scholar 

  • Wolf, R. and Heisenberg, M. (1990) Visual control of straight flight in Drosophila melano-gaster. J. Comp. Physiol. A 167:269–283.

    Article  CAS  Google Scholar 

  • Wolf-Oberhollenzer, F. and Kirschfeld, K. (1994) Motion sensitivity in the nucleus of the basal optic root of the pigeon. J. Neurophysiol. 71:1559–1573.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Bernhard Hassenstein on the occasion of his 75th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Basel AG

About this chapter

Cite this chapter

Kirschfeld, K. (1997). Course control and tracking: Orientation through image stabilization. In: Lehrer, M. (eds) Orientation and Communication in Arthropods. EXS, vol 84. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8878-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8878-3_3

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9811-9

  • Online ISBN: 978-3-0348-8878-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics