Skip to main content

Representation of Graphs in Diagrams of Graph Theory

  • Chapter
Visual Reasoning with Diagrams

Part of the book series: Studies in Universal Logic ((SUL))

  • 1836 Accesses

Abstract

The treatise of Dénes Kőnig Theorie der endlichen und unendlichen Graphen (1936) includes many diagrams. The style of the diagrams is typical of present-day texts of graph theory. In this treatise, many mathematical recreation problems are treated. Some of the problems were already treated by precedent mathematicians. In some of these early works, the diagrams were given, but the styles were not the same as that of Kőnig. Moreover, the way to use the diagrams in the early works is different from that of Kőnig.

Examining the diagrams, we will find that a certain type of diagrams became gradually influential. This historical aspect may be related to the formation of concepts of graph, but it will not be discussed here.

We will argue that Tarry’s talk “Géométrie de situation: nombre de manières distinctes de parcourir en une seule course toutes les allées d’un labyrinthe rentrant, en ne passant qu’une seule fois par chacune des allées” (1886) played an important role in the way to use the diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    I examined this relationship in my thesis [51], Chap. 6.

  2. 2.

    Kőnig made here a reference to the article by Sylvester entitled “On recent discoveries in mechanical conversion of motion” in 1873 [47]. This article treated a mode of producing motion in a straight line by a system of pure link-work without the aid of grooves or wheel-work, or any other means of constraint than that due to fixed centers, and joints for attaching or connecting rigid bars. Maybe here Kőnig had the following part of Sylvester’s article in mind: “The theory of ramification is one of pure colligation, for it takes no account of magnitude or position; geometrical lines are used, but have no more real bearing on the matter than those employed in genealogical tables have in explaining the laws of procreation. [New paragraph] The sphere within which any theory of colligation works is not spatial but logical—such theory is concerned exclusively with the necessary laws of antecedence and consequence, or in one word of connection in the abstract, or in other words is a development of the doctrine of the compound parenthesis.” (The Collected Mathematical Papers of James Joseph Sylvester, vol. 3, pp. 23–24.)

  3. 3.

    Some of the collections in this genre were cited by Kőnig in his books on mathematical recreations in 1902 and 1905 [27, 28], and some of them were cited even in his treatise of 1936 [29]: Problèmes plaisans et délectables qui se font par les nombres by Claude-Gaspar Bachet de Méziriac [58] in the early 17th century; Récreations mathématiques et physiques by Jacques Ozanam [36, 37] in the 17th century; Récreations mathématiques (4 volumes) and L’Arithmétique amusante by Édouard Lucas [3135] and Mathématiques et mathématiciens: pensées et curiosités by Alphonse Rebière [40, 41] in the 19th century; Mathematical Recreations and problems of past and present times (Mathematical Recreations and essays for the 4th edn. and later) by Walter William Rouse Ball [915] (and many later editions), Mathematische Mußestunden by Hermann Schubert [4345] and Récréations arithmétiques and Curiosités géométriques by Émile Fourrey [24, 25] around 1900; Mathematische Unterhaltungen und Spiele and Mathematische Spiele by Wilhelm Ahrens [14] in the early 20th century. Also in the period close to the publication of Kőnig’s treatise of 1936, a book in this genre was published in Belgium: La mathématique des jeux ou récréations mathématiques by Maurice Kraitchik [30], which might suggest interest of mathematicians at that time in mathematical recreations.

    Anne-Marie Décaillot made historical researches on Lucas’ works [1820].

    David Singmaster made a precise examination of all the editions of Ball’s book [46].

    Albrecht Heeffer [26] worked on a movement toward creation of this genre in the 17th century.

    In the UK and the USA in the 19th and the 20th century, amateur mathematicians or scientific writers—Samuel Loyd, Henry Ernst Dudeney, Martin Gardner and so on—also published in this domain. Some problems in their collections were taken from the collections listed above. This fact is interesting from the point of view of the popularization of mathematics, but, for the purpose of this article, we don’t need to examine precisely these works.

  4. 4.

    I translated these Hungarian books into English in my thesis [51].

  5. 5.

    As Décaillot says, “among the mathematical games and recreations of Euler, the traces of strings on the chessboard of Vandermonde in the 18th century, the ‘higher mathematics’ of Riemann and the Analysis situs of Poincaré, the geometry of situation has a fluctuating content which is structured only slowly during the 19th century” ([19], p. 129, my translation from French).

  6. 6.

    I examined the difference of the translations of Coupy and Lucas in Chap. 3 of my thesis [51].

  7. 7.

    A part of the line between A and B of Kőnig’s diagram is not connected, but it is only an error of printing. It should be continuous for consistency of the text.

  8. 8.

    Despite the fact that Poinsot speaks of a flexible string, he uses the length. This means that one looses the “geometry of situation”.

  9. 9.

    Poinsot mentioned Vandermonde [50] in the context of the problem of the knight’s move on a chessboard, as one of the problems concerning the “geometry of situation”. He meant that Vandermonde’s solution was simpler than Euler’s [23].

  10. 10.

    Charles-Ange Laisant (1841–1920) was a mathematician, and was a director of some reviews of mathematics.

  11. 11.

    It is unclear who the authors of the abstracts were, but someone in the bureau of the section which contained Tarry’s talk may have been the author: Président d’honneur: M. le Géneral FROLOW, major général du génie russe (Russian general major of engineering); Président: M. Ed. LUCAS, Prof. de math. spéciale au Lycée Saint-Louis (Professor of higher mathematics at the Saint-Louis High school); Vice-Président: M. Laisant, Député de la Seine, Anc. Él. de l’Éc. Polyt. (Deputy of the Seine, Alumnus of the Polytechnic School); Secrétaire: M. HEITZ, Él. de l’Éc. centr. des Arts et Manufact. (Student of the central school of Arts and Manufacture).

  12. 12.

    Tarry talked about figures of mazes according to his article in vol. 2 of the proceedings.

  13. 13.

    The problem treated by Tarry was therefore different from the problem treated by Poinsot, who described the possibility of tracing all the edges and diagonals of a polygon once and only once with one stroke.

  14. 14.

    Michel Reiss (1805–1869) was a mathematician from Frankfurt who worked mainly on the theory of determinants. He published an article about dominoes “Evaluation du nombre de combinaisons desquelles les 28 dés d’un jeu du domino sont susceptibles d’après la règle de ce jeu” (1871) of 58 pages [42].

  15. 15.

    That is, Édouard Lucas.

References

  1. Ahrens, W.: Mathematische Unterhaltungen und Spiele. Teubner, Leipzig (1901)

    MATH  Google Scholar 

  2. Ahrens, W.: Mathematische Spiele. In: Meyer, W.F. (ed.) Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Band 1, pp. 1080–1093. Teubner, Leipzig (1902)

    Google Scholar 

  3. Ahrens, W.: Mathematische Unterhaltungen und Spiele, vol. 2. Teubner, Leipzig (1918) (Zweite, vermehrte und verbesserte Auflage)

    MATH  Google Scholar 

  4. Ahrens, W.: Mathematische Unterhaltungen und Spiele, vol. 1. Teubner, Leipzig (1921) (Dritte, verbesserte, anastatisch, gedruckte Auflage)

    Google Scholar 

  5. Bachet, C.-G.: Problèmes plaisans et délectables qui se font par les nombres. Pierre Rigaud, Lyon (1612)

    Google Scholar 

  6. Bachet, C.-G.: Problèmes plaisans et délectables qui se font par les nombres. Pierre Rigaud, Lyon (1624) (Seconde édition revue, corrigée et augmentée de plusieurs propositions, et de plusieurs problèmes par le même auteur)

    Google Scholar 

  7. Bachet, C.-G.: Problèmes plaisants et délectables qui se font par les nombres. Gauthier-Villars, Paris (1874) (Troisième édition, revue, simplifiée et augmentée par A. Labosne)

    Google Scholar 

  8. Bachet, C.-G.: Problèmes plaisants et délectables qui se font par les nombres. Gauthier-Villars, Paris (1879) (Quatrième édition, revue, simplifiée et augmentée par A. Labosne)

    Google Scholar 

  9. Ball, W.W.R.: Mathematical Recreations and Problems of Past and Present Times. Macmillan, London (1892) (First edition in February; second edition in May with no material changes)

    MATH  Google Scholar 

  10. Ball, W.W.R.: Mathematical Recreations and Problems of Past and Present Times, 3rd edn. Macmillan, London (1896)

    MATH  Google Scholar 

  11. Ball, W.W.R.: Récréations et problèmes mathématiques des temps anciens et modernes. Hermann, Paris (1898) (Troisème édition revue et augmentée par l’auteur, traduite par J. Fitz-Patrick)

    Google Scholar 

  12. Ball, W.W.R.: Mathematical Recreations and Essays, 4th edn. Macmillan, London (1905)

    MATH  Google Scholar 

  13. Ball, W.W.R.: Récréations et problèmes mathématiques des temps anciens et modernes, vol. 1. Hermann, Paris (1907) (Deuxième édition française traduite d’après la quatrième édition anglaise et enrichie de nombreuses additions par J. Fitz-Patrick)

    Google Scholar 

  14. Ball, W.W.R.: Récréations et problèmes mathématiques des temps anciens et modernes, vol. 2. Hermann, Paris (1908) (Deuxième édition française traduite d’après la quatrième édition anglaise et enrichie de nombreuses additions par J. Fitz-Patrick)

    Google Scholar 

  15. Ball, W.W.R.: Mathematical Recreations and Essays, 5th edn. Macmillan, London (1911)

    MATH  Google Scholar 

  16. Biggs, N.L., Lloyd, E.K., Wilson, R.J.: Graph Theory, 1736–1936. Oxford University Press, New York (1976) (First published 1976; reprinted with corrections 1997; first published in paperback 1986; reprinted with corrections 1998)

    MATH  Google Scholar 

  17. Coupy, É.: Solution d’un problème appartenant à la géométrie de situation, par Euler. Nouv. Ann. Math. 10, 106–119 (1851)

    Google Scholar 

  18. Décaillot, A.-M.: L’arithméticien Édouard Lucas (1842–1891): théorie et instrumentation. Rev. Hist. Math. 4(2), 191–236 (1998)

    MATH  Google Scholar 

  19. Décaillot, A.-M.: Édouard Lucas (1842–1891): le parcours original d’un scientifique dans la deuxième moitié du XIXe siècle. Ph.D. thesis, L’université René Descartes-Paris V (1999)

    Google Scholar 

  20. Décaillot, A.-M.: Géométrie des tissus. Mosaïques. Échiquiers. Mathématiques curieuses et utiles. Rev. Hist. Math. 8(2), 145–206 (2003)

    Google Scholar 

  21. Epple, M.: Topology, matter, and space I: topological notions in 19th-century natural philosophy. Arch. Hist. Exact Sci. 52, 297–392 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Euler, L.: Solutio problematis ad geometriam situs pertinentis. Comment. Acad. Sci. Imp. Petropol. 8, 128–140 (1736) (Based on a talk presented to the Academy on 26 August 1735; printed in 1741; English translation in the book [16])

    Google Scholar 

  23. Euler, L.: Solution d’une question curieuse qui ne paroit soumise à aucune analyse. Mém. Acad. R. Sci. B.-Lett. 15, 310–337 (1766)

    Google Scholar 

  24. Fourrey, É.: Récréations arithmétiques. Nony, Paris (1899) (1er edn. 1899; 2e edn. 1901; 3e edn. 1904; 4e edn. 1907; 8e edn. 1947; nouvelle edn. augmentée d’une étude de Jean-Louis Nicolas 1994/2001)

    Google Scholar 

  25. Fourrey, É.: Curiosités géométriques. Vuibert et Nony, Paris (1907)

    Google Scholar 

  26. Heeffer, A.: Récréations mathématiques (1624), a study on its authorship, sources and influence. Gibecière 1, 77–167 (2006)

    Google Scholar 

  27. Kőnig, D.: Mathematikai mulatságok, vol. 1. Lampel Róbert, Budapest (1902) (Reprinted in 1991)

    Google Scholar 

  28. Kőnig, D.: Mathematikai mulatságok, vol. 2. Lampel Róbert, Budapest (1905) (Reprinted in 1992)

    Google Scholar 

  29. König, D.: Theorie der endlichen und unendlichen Graphen. Akad. Verlagsgesellschaft, Leipzig (1936) (Republished in 1950 by Chelsea Publishing Company in New York; republished in 1986, with “Leonhard Eulers Abhandlung über das Königsberger Brückenproblem (1736)”, with preface by Paul Erdös, and with a contribution from Tibor Gallai: “Denes König—Ein biographischer Abriß” edited with an appendix by Horst Sachs, Teubner-Arch. Math., Band 6, S. 3)

    Google Scholar 

  30. Kraitchik, M.: La mathématique des jeux ou récréations mathématiques. Stevens Frères, Bruxelles (1930)

    Google Scholar 

  31. Lucas, É.: Récréations mathématiques, vol. I. Gauthier-Villars, Paris (1882) (2nd edn. 1891)

    MATH  Google Scholar 

  32. Lucas, É.: Récréations mathématiques, vol. II. Gauthier-Villars, Paris (1883) (2nd edn. 1896)

    Google Scholar 

  33. Lucas, É.: Récréations mathématiques, vol. III. Gauthier-Villars, Paris (1893)

    MATH  Google Scholar 

  34. Lucas, É.: Récréations mathématiques, vol. IV. Gauthier-Villars, Paris (1894)

    Google Scholar 

  35. Lucas, É.: L’Arithmétique amusante. Gauthier-Villars, Paris (1895)

    MATH  Google Scholar 

  36. Ozanam, J.: Récreations mathématiques et physiques, vols. 1–2. Jombert, Paris (1694) (Le Traité des horloges élémentaires est traduit de l’italien de Domenico Martinelli)

    Google Scholar 

  37. Ozanam, J.: Récreations mathématiques et physiques, vols. 1–4. Virguin, Paris (1778) (Nouvelle édition, totalement refondue & considérablement augmentée par M. de C.G.F.)

    Google Scholar 

  38. Poinsot, L.: Mémoire sur les polygones et les polyèdres. J. Éc. Polytech. 4(10), 16–48 (1810) (Lu à la première classe de l’institut le 24 Juillet 1809)

    Google Scholar 

  39. Pont, J.-C.: La topologie algébrique des origines à Poincaré. Presses Universitaires de France, Paris (1974)

    MATH  Google Scholar 

  40. Rebière, A.: Mathématiques et mathématiciens: pensées et curiosités. Nony, Paris (1889) (282 pages)

    MATH  Google Scholar 

  41. Rebière, A.: Mathématiques et mathématiciens: pensées et curiosités, 3rd edn. Nony, Paris (1898) (566 pages)

    Google Scholar 

  42. Reiss, M.: Evaluation du nombre de combinaisons desquelles les 28 dés d’un jeu du domino sont susceptibles d’après la règle de ce jeu. Ann. Mat. Pura Appl. 5, 63–120 (1871–1873)

    Google Scholar 

  43. Schubert, H.: Mathematische Mußestunden. Göschen’sche Verlagshandlung, Hamburg (1897) (English translation [44])

    Google Scholar 

  44. Schubert, H.: Mathematical Essays and Recreations. Open Court Publishing, Chicago (1898) (Translated from German by Thomas J. McCormack)

    Google Scholar 

  45. Schubert, H.: Mathematische Mußestunden, vols. I–III. Göschen, Leipzig (1900) (It appeared also in an abbreviated one-volume form in 1904)

    MATH  Google Scholar 

  46. Singmaster, D.: Walter William Rouse Ball, Mathematical recreations and problems of past and present times, first edition (1892). In: Grattan-Guinness, I. (ed.) Landmark Writings in Western Mathematics, 1640–1940, pp. 653–663. Elsevier, Amsterdam (2005) (Chap. 50)

    Chapter  Google Scholar 

  47. Sylvester, J.J.: On recent discoveries in mechanical conversion of motion. In: Proceedings of the Royal Institution of Great Britain, vol. 7, pp. 179–198 (1873–1875) (Reprinted in The Collected Mathematical Papers of James Joseph Sylvester, vol. III, pp. 7–25. Cambridge, 1904–1912)

    Google Scholar 

  48. Tarry, G.: Géométrie de situation: nombre de manières distinctes de parcourir en une seule course toutes les allées d’un labyrinthe rentrant, en ne passant qu’une seule fois par chacune des allées. In: Association française pour l’avancement des sciences, Compte rendu de la 15e session, Nancy, 1886, vols. 1–2, pp. 49–53 de la 2e partie. Paris (1887) (Secrétariat de l’association, Georges Masson. Le résumé: p. 81 de la 1er partie; 2 feuilles de figures à la fin de la 2e partie)

    Google Scholar 

  49. Terquem, O.: Sur les polygones et les polyèdres étoilés, polygones funiculaires. Nouv. Ann. Math. 8, 68–74 (1849) (D’après M. Poinsot, Sects. 1–10)

    Google Scholar 

  50. Vandermonde, A.-T.: Remarques sur des problèmes de situation. In: Histoire de l’académie royale des sciences. Année MDCCLXXI. Avec les Mémoires de Mathématique & de Physique, pour la même Année, Tirés des Registres de cette Académie, pp. 566–574. L’Imprimerie Royale, Paris (1771) (Printed in 1774; English translation in the book [16])

    Google Scholar 

  51. Wate-Mizuno, M.: The works of Kőnig Dénes (1884–1944) in the domain of mathematical recreations and his treatment of recreational problems in his works of graph theory. Ph.D. thesis, Université Denis Diderot-Paris 7 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuko Wate-Mizuno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this chapter

Cite this chapter

Wate-Mizuno, M. (2013). Representation of Graphs in Diagrams of Graph Theory. In: Moktefi, A., Shin, SJ. (eds) Visual Reasoning with Diagrams. Studies in Universal Logic. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0600-8_10

Download citation

Publish with us

Policies and ethics