Skip to main content

A Survey on the Krein–von Neumann Extension, the Corresponding Abstract Buckling Problem, and Weyl-type Spectral Asymptotics for Perturbed Krein Laplacians in Nonsmooth Domains

  • Conference paper
  • First Online:
Mathematical Physics, Spectral Theory and Stochastic Analysis

Part of the book series: Operator Theory: Advances and Applications ((APDE,volume 232))

Abstract

In the first (and abstract) part of this survey we prove the unitary equivalence of the inverse of the Krein–von Neumann extension (on the orthogonal complement of its kernel) of a densely defined, closed, strictly positive operator, ≥ ε ℋ for some ε > 0 in a Hilbert space 210B to an abstract bucklingpr oblem operator.

Mathematics Subject Classification (2010). Primary 35J25, 35J40, 35P15; secondary 35P05, 46E35, 47A10, 47F05.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972.

    MATH  Google Scholar 

  2. R.A. Adams and J.J.F. Fournier, Sobolev Spaces, second edition, Academic Press, 2003.

    Google Scholar 

  3. D.R. Adams and L.I. Hedberg, Function Spaces and Potential Theory, Grundlehren der Mathematischen Wissenschaften, Vol. 314, Springer, Berlin, 1996.

    Google Scholar 

  4. V. Adamyan, Non-negative perturbations of non-negative self-adjoint operators, Meth. Funct. Anal. Top. 13, no. 2, 103–109 (2007).

    Google Scholar 

  5. V. Adolfsson and J. Pipher, The inhomogeneous Dirichlet problem for Δ2 in Lipschitz domains, J. Funct. Anal. 159, 137–190 (1998).

    MATH  MathSciNet  Google Scholar 

  6. M.S. Agranovich, Elliptic Boundary Problems, Partial Differential Equations, IX, Encyclopaedia Math. Sci., Vol. 79, M.S. Agranovich, Yu.V. Egorov, M.A. Shubin (eds.), Springer, Berlin, 1997, pp. 1–144.

    Google Scholar 

  7. M.S. Agranovich, Spectral problems for second-order strongly elliptic systems in smooth and non-smooth domains, Russ. Math. Surv. 57:5, 847–920 (2003).

    Google Scholar 

  8. A. Aimi and M. Diligenti, Upper and lower bounds of eigenvalues of the classical buckling problem, Calcolo 29, no. 3–4, 313–328 (1992).

    Google Scholar 

  9. A. Aimi and M. Diligenti, Error estimation in the computation of eigenvectors in the buckling problem for a plate embedded at the boundary, Calcolo 30, no. 2, 171–187 (1993).

    Google Scholar 

  10. N.I. Akhiezer and I.M. Glazman, Theory of Linear Operators in Hilbert Space, Volume II, Pitman, Boston, 1981.

    MATH  Google Scholar 

  11. S. Albeverio, J.F. Brasche, M.M. Malamud, and H. Neidhardt, Inverse spectral theory for symmetric operators with several gaps: scalar-type Weyl functions, J. Funct. Anal. 228, 144–188 (2005).

    MATH  MathSciNet  Google Scholar 

  12. S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Point interactions in two dimensions: Basic properties, approximations and applications to solid state physics, J. reine angew. Math. 380, 87–107 (1987).

    Google Scholar 

  13. S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, Springer, Berlin, 1988.

    Google Scholar 

  14. A. Alonso and B. Simon, The Birman–Krein–Vishik theory of selfadjoint extensions of semibounded operators, J. Operator Th. 4, 251–270 (1980); Addenda: 6, 407 (1981).

    Google Scholar 

  15. W.O. Amrein and D.B. Pearson, M operators: a generalization of Weyl–Titchmarsh theory, J. Comp. Appl. Math. 171, 1–26 (2004).

    MATH  MathSciNet  Google Scholar 

  16. T. Ando and K. Nishio, Positive selfadjoint extensions of positive symmetric operators, Tohoku Math. J. (2), 22, 65–75 (1970).

    Google Scholar 

  17. Yu.M. Arlinskii, On m-accretive extensions and restrictions, Meth. Funct. Anal. Top. 4, 1–26 (1998).

    MathSciNet  Google Scholar 

  18. Yu.M. Arlinskii, Abstract boundary conditions for maximal sectorial extensions of sectorial operators, Math. Nachr. 209, 5–36 (2000).

    MathSciNet  Google Scholar 

  19. Yu. Arlinskii, S. Belyi, and E. Tsekanovskii, Conservative Realizations of Herglotz– Nevanlinna Functions, Operator Theory advances and Applications, Vol. 217, Birkhäuser, Springer, Basel, 2011.

    Google Scholar 

  20. Yu.M. Arlinskii, S. Hassi, Z. Sebestyén, and H.S.V. de Snoo, On the class of extremal extensions of a nonnegative operator, in Recent Advances in Operator Theory and Related Topics, L. Kérchy, C. Foias, I. Gohberg, and H. Langer (eds.), Operator Theory: Advances and Applications, Vol. 127, Birkhäuser, Basel, 2001, pp. 41–81.

    Google Scholar 

  21. Yu. Arlinski\( \mathrm{\breve{i}} \) and Yu. Kovalev, Operators in divergence form and their Friedrichs and Krein extensions, Opusc. Math. 31, 501–517 (2011).

    Google Scholar 

  22. Yu.M. Arlinskii and E.R. Tsekanovskii, On the theory of nonnegative selfadjoint extensions of a nonnegative symmetric operator, Rep. Nat. Acad. Sci. Ukraine 2002, no. 11, 30–37.

    Google Scholar 

  23. Yu.M. Arlinskiĭ and E.R. Tsekanovskiĭ, On von Neumann’s problem in extension theory of nonnegative operators, Proc. Amer. Math. Soc. 131, 3143–3154 (2003).

    Google Scholar 

  24. Yu.M. Arlinskiĭ and E.R. Tsekanovskiĭ, The von Neumann problem for nonnegative symmetric operators, Integr. Equ. Oper. Theory 51, 319–356 (2005).

    Google Scholar 

  25. Yu. Arlinskiĭ and E. Tsekanovskiĭ, M.Kreĭn’s research on semibounded operators, its contemporary developments, and applications, in Modern Analysis and Applications. The Mark Krein Centenary Conference, Vol. 1, V. Adamyan, Y.M. Berezansky, I. Gohberg, M.L. Gorbachuk, V. Gorbachuk, A.N. Kochubei, H. Langer, and G. Popov (eds.), Operator Theory: Advances and Applications, Vol. 190, Birkhäuser, Basel, 2009, pp. 65–112.

    Google Scholar 

  26. M.S. Ashbaugh, Isoperimetric and universal inequalities for eigenvalues, in Spectral Theory and Geometry, B. Davies and Yu. Safarov (eds.), London Mathematical Society Lecture Note Series, Vol. 273, Cambridge University Press, Cambridge, 1999, pp. 95–139.

    Google Scholar 

  27. M.S. Ashbaugh, On universal inequalities for the low eigenvalues of the buckling problem, in “Partial Differential Equations and Inverse Problems,” Contemp. Math. 362, pp. 13–31, Amer. Math. Soc., Providence, RI, 2004.

    Google Scholar 

  28. M.S. Ashbaugh, On universal inequalities for the low eigenvalues of the buckling problem II, preprint, 2008.

    Google Scholar 

  29. M.S. Ashbaugh, F. Gesztesy, M. Mitrea, and G. Teschl, Spectral theory for perturbed Krein Laplacians in nonsmooth domains, Adv. Math. 223, 1372–1467 (2010).

    MATH  MathSciNet  Google Scholar 

  30. M.S. Ashbaugh, F. Gesztesy, M. Mitrea, R. Shterenberg, and G. Teschl, The Krein– von Neumann extension and its connection to an abstract buckling problem, Math. Nachr. 283, 165–179 (2010).

    MATH  MathSciNet  Google Scholar 

  31. M.S. Ashbaugh and R.S. Laugesen, Fundamental tones and buckling loads of clamped plates, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23, no. 2, 383–402 (1996).

    Google Scholar 

  32. M.S. Ashbaugh and H.A. Levine, Inequalities for the Dirichlet and Neumann eigenvalues of the Laplacian for domains on spheres, Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1997), Exp. no. I, 15 pp., École Polytechnique, Palaiseau, 1997.

    Google Scholar 

  33. P. Aviles, Symmetry theorems related to Pompeiu’s problem, Amer. J. Math. 108, 1023–1036 (1986).

    MATH  MathSciNet  Google Scholar 

  34. I. Babuška and R. Výborný, Continuous dependence of eigenvalues on the domain, Czech. Math. J. 15, 169–178 (1965).

    Google Scholar 

  35. J. Behrndt and M. Langer, Boundary value problems for partial differential operators on bounded domains, J. Funct. Anal. 243, 536–565 (2007).

    MATH  MathSciNet  Google Scholar 

  36. M.S. Berger, Nonlinearity and Functional Analysis, Pure and Appl. Math., Vol. 74, Academic Press, New York, 1977.

    Google Scholar 

  37. M.Sh. Birman, On the theory of self-adjoint extensions of positive definite operators, Mat. Sbornik 38, 431–450 (1956) (Russian).

    Google Scholar 

  38. M.Sh. Birman, Perturbations of the continuous spectrum of a singular elliptic operator by varying the boundary and the boundary conditions, Vestnik Leningrad Univ. 17, no. 1, 22–55 (1962) (Russian); Engl. transl. in Spectral Theory of Differential Operators: M.Sh. Birman 80th Anniversary Collection, T. Suslina and D. Yafaev (eds.), AMS Translations, Ser. 2, Advances in the Mathematical Sciences, Vol. 225, Amer. Math. Soc., Providence, RI, 2008, pp. 19–53.

    Google Scholar 

  39. M.Š. Birman and N.D. Filonov, Weyl asymptotics of the spectrum of the Maxwell operator with non-smooth coefficients in Lipschitz domains, in “Nonlinear Equations and Spectral Theory”, pp. 27–44, Amer. Math. Soc. Transl. Ser. 2, Vol. 220, Amer. Math. Soc., Providence, RI, 2007.

    Google Scholar 

  40. M.Sh. Birman and M.Z. Solomyak, Leading term in the asymptotic spectral formula for “non-smooth” elliptic problems, Funkcional. Anal. i Priložen 4, no. 4, 1–13 (1970) (Russian); Engl. transl. in Funct. Anal. Appl. 4, 265–275 (1970).

    Google Scholar 

  41. M.Sh. Birman and M.Z. Solomyak, On the asymptotic spectrum of “non-smooth” elliptic equations, Funkcional. Anal. i Priložen 5, no. 1, 69–70 (1971) (Russian); Engl. transl. in Funct. Anal. Appl. 5, 56–57 (1971).

    Google Scholar 

  42. M.Š. Birman and M.Z. Solomjak, Spectral asymptotics of nonsmooth elliptic operators. I, Trans. Moscow Math. Soc. 27, 1–52 (1972).

    Google Scholar 

  43. M.Š. Birman and M.Z. Solomjak, Spectral asymptotics of nonsmooth elliptic operators. I, Trans. Moscow Math. Soc. 28, 1–32 (1973).

    Google Scholar 

  44. M.Sh. Birman and M.Z. Solomyak, Asymtotic behavior of the spectrum of differential equations, Itogi Nauki i Tekhniki, Matematicheskii Analiz., 14, 5–58 (1977) (Russian); Engl. transl. in J. Soviet Math. 12, no. 3, 247–283 (1979).

    Google Scholar 

  45. M.Š. Birman and M.Z. Solomjak, Weyl asymptotics of the spectrum of the Maxwell operator for domains with a Lipschitz boundary, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 127, no. 3, 23–28 (1987) (Russian).

    Google Scholar 

  46. P.E. Bjørstad and B.P. Tjøstheim, High precision solutions of two fourth-order eigenvalue problems, Computing 63, no. 2, 97–107 (1999).

    Google Scholar 

  47. J.H. Bramble and L.E. Payne, Pointwise bounds in the first biharmonic boundary value problem, J. Math. Phys. 42, 278–286 (1963).

    MathSciNet  Google Scholar 

  48. J.F. Brasche, M.M. Malamud, and H. Neidhardt, Weyl function and spectral properties of self-adjoint extensions, Integ ral Eqs. Operator Theory 43, 264–289 (2002).

    MATH  MathSciNet  Google Scholar 

  49. B.M. Brown and J.S. Christiansen, On the Krein and Friedrichs extension of a positive Jacobi operator, Expo. Math. 23, 179–186 (2005).

    MATH  MathSciNet  Google Scholar 

  50. B.M. Brown, G. Grubb, and I.G. Wood, M-functions for closed extensions of adjoint pairs of operators with applications to elliptic boundary problems, Math.Nachr. 282, 314–347 (2009).

    MATH  MathSciNet  Google Scholar 

  51. M. Brown, J. Hinchcliffe, M. Marletta, S. Naboko, and I. Wood, The abstract Titchmarsh–Weyl M-function for adjoint operator pairs and its relation to the spectrum, Integral Equ. Operator Th. 63, 297–320 (2009).

    MATH  MathSciNet  Google Scholar 

  52. M. Brown, M. Marletta, S. Naboko, and I. Wood, Boundary triplets and M- functions for non-selfadjoint operators, with applications to elliptic PDEs and block operator matrices, J. London Math. Soc. (2) 77, 700–718 (2008).

    Google Scholar 

  53. J. Brüning, V. Geyler, and K. Pankrashkin, Spectra of self-adjoint extensions and applications to solvable Schrödinger operators, Rev.Math. Phys. 20, 1–70 (2008).

    MATH  MathSciNet  Google Scholar 

  54. W. Bulla and F. Gesztesy, Deficiency indices and singular boundary conditions in quantum mechanics, J. Math. Phys. 26, 2520–2528 (1985).

    MATH  MathSciNet  Google Scholar 

  55. V.I. Burenkov and P.D. Lamberti, Spectral stability of Dirichlet second-order uniformly elliptic operators, J. Diff. Eq. 244, 1712–1740 (2008).

    MATH  MathSciNet  Google Scholar 

  56. V.I. Burenkov, P.D. Lamberti, and M. Lanza de Cristoforis, Spectral stability of nonnegative self-adjoint operators, J. Math. Sci. 149, 1417–1452 (2008).

    MathSciNet  Google Scholar 

  57. A.M. Caetano, On the search for the asymptotic behaviour of the eigenvalues of the Dirichlet Laplacian for bounded irregular domains, Some aspects of fractals in mathematics and physics (Toulouse, 1993), Internat. J. Appl. Sci. Comput. 2, no. 2, 261–287 (1995).

    Google Scholar 

  58. A.M. Caetano, Eigenvalue asymptotics of the Stokes operator for fractal domains, Proc. London Math. Soc. (3), 76, no. 3, 579–602 (1998).

    Google Scholar 

  59. L. Carleson, Selected Problems on Exceptional Sets, Van Nostrand Mathematical Studies, no. 13, Princeton, 1967.

    Google Scholar 

  60. Q.-M. Chengan d H. Yang, Universal bounds for eigenvalues of a buckling problem, Comm. Math. Phys. 262, 663–675 (2006).

    Google Scholar 

  61. S. Clark, F. Gesztesy, R. Nichols, and M. Zinchenko, Boundary data maps and Krein’s resolvent formula for Sturm–Liouville operators on a finite interval, arXiv:1204.3314, Operator and Matrices (to appear).

    Google Scholar 

  62. D. Daners, Dirichlet problems on varying domains, J. Diff. Eq. 188, 591–624 (2003).

    MATH  MathSciNet  Google Scholar 

  63. E.B. Davies, L p spectral theory of higher-order elliptic differential operators, Bull. London Math. Soc. 29, no. 5, 513–546 (1997).

    Google Scholar 

  64. R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 4, Springer, Berlin, 1990.

    Google Scholar 

  65. V.A. Derkach and M.M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal. 95, 1–95 (1991).

    MATH  MathSciNet  Google Scholar 

  66. V.A. Derkach and M.M. Malamud, The extension theory of Hermitian operators and the moment problem, J. Math. Sci. 73, 141–242 (1995).

    MATH  MathSciNet  Google Scholar 

  67. V.A. Derkach, M.M. Malamud, and E.R. Tsekanovskii, Sectorial extensions of a positive operator and the characteristic function, Soviet Math. Dokl. 37, 106–110 (1988).

    MATH  MathSciNet  Google Scholar 

  68. V.A. Derkach, M.M. Malamud, and E.R. Tsekanovskii, Sectorial extensions of a positive operator and the characteristic function, Ukrainian Math. J. 41, 136–142 (1989).

    MATH  MathSciNet  Google Scholar 

  69. M.P. do Carmo, Riemannian Geometry (translated by F. Flaherty from the second Portuguese edition), Birkhäuser, Boston, 1992.

    Google Scholar 

  70. W.F. Donoghue, On the perturbation of spectra, Commun. Pure Appl. Math. 18, 559–579 (1965).

    MATH  MathSciNet  Google Scholar 

  71. D.E. Edmunds andW.D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1989.

    Google Scholar 

  72. W.N. Everitt and L. Markus, Complex symplectic spaces and boundary value problems, Bull. Amer. Math. Soc. 42, 461–500 (2005).

    MATH  MathSciNet  Google Scholar 

  73. W.N. Everitt, L. Markus, and M. Plum, An unusual self-adjoint linear partial differential operator, Trans. Amer. Math. Soc. 357, 1303–1324 (2004).

    MathSciNet  Google Scholar 

  74. W.N. Everitt, L. Markus, M. Muzzulini, and M. Plum, A continuum of unusual self-adjoint linear partial differential operators, J. Comp. Appl. Math. 208, 164–175 (2007).

    MATH  MathSciNet  Google Scholar 

  75. W.G. Faris, Self-Adjoint Operators, Lecture Notes in Mathematics, Vol. 433, Springer, Berlin, 1975.

    Google Scholar 

  76. K.-H. Förster and M.M. Nafalska, Nonnegative extensions via embeddings, in Recent Advances in Operator Theory in Hilbert and Krein spaces, J. Behrndt, K.-H. Förster, and C. Trunk (eds.), Operator Theory: Advances and Applications, Vol. 198, Birkhäuser, Basel, 2009, pp. 171–183.

    Google Scholar 

  77. K.-H. Förster and M.M. Nafalska, A factorization of extremal extensions with applications to block operator matrices, Acta Math. Hung. 129, 112–141 (2010).

    MATH  Google Scholar 

  78. H. Freudenthal, Über die Friedrichsche Fortsetzung halbbeschränkter Hermitescher Operatoren, Kon. Akad. Wetensch., Amsterdam, Proc. 39, 832–833 (1936).

    Google Scholar 

  79. K. Friedrichs, Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren I, II, Math. Ann. 109, 465–487, 685– 713 (1934), corrs. in Math. Ann. 110, 777–779 (1935).

    Google Scholar 

  80. B. Fuglede, Continuous domain dependence of the eigenvalues of the Dirichlet Laplacian and related operators in Hilbert space, J. Funct. Anal. 167, 183–200 (1999).

    MATH  MathSciNet  Google Scholar 

  81. M. Fukushima, Dirichlet Forms and Markov Processes, North-Holland, Amsterdam, Kodansha, Tokyo, 1980.

    MATH  Google Scholar 

  82. M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, 2nd revised and extended ed., de Gruyter Studies in Math., Vol. 19, de Gruyter, Berlin, 2011.

    Google Scholar 

  83. F. Gesztesy, N.J. Kalton, K.A. Makarov, and E. Tsekanovskii, Some applications of operator-valued Herglotz functions, in “Operator Theory, System Theory and Related Topics,” Oper. Theory Adv. Appl., Vol. 123, Birkhäuser, Basel, 2001, pp. 271–321.

    Google Scholar 

  84. F. Gesztesy, Y. Latushkin, M. Mitrea, and M. Zinchenko, Nonselfadjoint operators, infinite determinants, and some applications, Russ. J. Math. Phys., 12, 443–471 (2005).

    MATH  MathSciNet  Google Scholar 

  85. F. Gesztesy, K.A. Makarov, and E. Tsekanovskii, An Addendum to Krein’s formula, J. Math. Anal. Appl. 222, 594–606 (1998).

    MATH  MathSciNet  Google Scholar 

  86. F. Gesztesy and M. Mitrea, Generalized Robin boundary conditions, Robin-to- Dirichlet maps, and Krein-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains, in Perspectives in Partial Differential Equations, Harmonic Analysis and Applications: A Volume in Honor of Vladimir G. Maz’ya’s 70th Birthday, D. Mitrea and M. Mitrea (eds.), Proceedings of Symposia in Pure Mathematics, Vol. 79, Amer. Math. Soc., Providence, RI, 2008, pp. 105–173.

    Google Scholar 

  87. F. Gesztesy and M. Mitrea, Robin-to-Robin maps and Krein-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains, in Modern Analysis and Applications. The Mark Krein Centenary Conference, Vol. 2, V. Adamyan, Y. M. Berezansky, I. Gohberg,M. L. Gorbachuk, V. Gorbachuk, A. N. Kochubei, H. Langer, and G. Popov (eds.), Operator Theory: Advances and Applications, Vol. 191, Birkhäuser, Basel, 2009, pp. 81–113.

    Google Scholar 

  88. F. Gesztesy and M. Mitrea, Generalized Robin Laplacians and some remarks on a paper by Filonov on eigenvalue inequalities, J. Diff. Eq. 247, 2871–2896 (2009).

    MATH  MathSciNet  Google Scholar 

  89. F. Gesztesy and M. Mitrea, Self-adjoint extensions of the Laplacian and Krein-type resolvent formulas in nonsmooth domains, J. Analyse Math. 113, 53–172 (2011).

    MATH  MathSciNet  Google Scholar 

  90. F. Gesztesy, M. Mitrea, and M. Zinchenko, Variations on a theme of Jost and Pais, J. Funct. Anal. 253, 399–448 (2007).

    MATH  MathSciNet  Google Scholar 

  91. F. Gesztesy and E. Tsekanovskii, On matrix-valued Herglotz functions, Math. Nachr. 218, 61–138 (2000).

    MATH  MathSciNet  Google Scholar 

  92. D. Gilbargan d N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1983.

    Google Scholar 

  93. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.

    MATH  Google Scholar 

  94. G. Grubb, A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa (3), 22, 425–513 (1968).

    Google Scholar 

  95. G. Grubb, Les problèmes aux limites généraux d’un opérateur elliptique, provenant de le théorie variationnelle, Bull. Sci. Math. (2), 94, 113–157 (1970).

    Google Scholar 

  96. G. Grubb, On coerciveness and semiboundedness of general boundary problems, Israel J. Math. 10, 32–95 (1971).

    MATH  MathSciNet  Google Scholar 

  97. G. Grubb, Spectral asymptotics for the “soft” selfadjoint extension of a symmetric elliptic differential operator, J. Operator Th. 10, 9–20 (1983).

    MATH  MathSciNet  Google Scholar 

  98. G. Grubb, Known and unknown results on elliptic boundary problems, Bull. Amer. Math. Soc. 43, 227–230 (2006).

    MATH  MathSciNet  Google Scholar 

  99. G. Grubb, Krein resolvent formulas for elliptic boundary problems in nonsmooth domains, Rend. Semin. Mat. Univ. Politec. Torino 66, 271–297 (2008).

    MATH  MathSciNet  Google Scholar 

  100. G. Grubb, Distributions and Operators, Graduate Texts in Mathematics, Vol. 252, Springer, New York, 2009.

    Google Scholar 

  101. G. Grubb, The mixed boundary value problem, Krein resolvent formulas and spectral asymptotic estimates, J. Math. Anal. Appl. 382, 339–363 (2011).

    MATH  MathSciNet  Google Scholar 

  102. G. Grubb, Krein-like extensions and the lower boundedness problem for elliptic operators, J. Diff. Eq. 252, 852–885 (2012).

    MATH  MathSciNet  Google Scholar 

  103. P. Hartman, Perturbation of spectra and Krein extensions, Rend. Circ. Mat. Palermo (2) 5, 341–354 (1957).

    Google Scholar 

  104. R. Harvey and J.C. Polking, A notion of capacity which characterizes removable singularities, Trans. Amer. Math. Soc. 169, 183–195 (1972).

    MATH  MathSciNet  Google Scholar 

  105. S. Hassi and S. Kuzhel, On symmetries in the theory of finite rank singular perturbations, J. Funct. Anal. 256, 777–809 (2009).

    MATH  MathSciNet  Google Scholar 

  106. S. Hassi, M. Malamud, and H. de Snoo, On Kreĭn’s extension theory of nonnegative operators, Math. Nachr. 274–275, 40–73 (2004).

    Google Scholar 

  107. S. Hassi, A. Sandovici, H. de Snoo, and H.Winkler, A general factorization approach to the extension theory of nonnegative operators and relations, J. Operator Th. 58, 351–386 (2007).

    MATH  Google Scholar 

  108. S. Hassi, Z. Sebestyén, and H. de Snoo, Domain and range descriptions for adjoint relations, and parallel sums and differences of forms, in Recent Advances in Operator Theory in Hilbert and Krein spaces, J. Behrndt,K.-H. Förster, and C. Trunk (eds.), Operator Theory: Advances and Applications, Vol. 198, Birkhäuser, Basel, 2009, pp. 211–227.

    Google Scholar 

  109. C. He and M.L. Lapidus, Generalized Minkowski Content, Spectrum of Fractal Drums, Fractal Strings and the Riemann Zeta-Function, Mem. Amer. Math. Soc. 127, no. 608 (1997).

    Google Scholar 

  110. G.N. Hile and R.Z. Yeh, Inequalities for eigenvalues of the biharmonic operator, Pacific J. Math. 112, no. 1, 115–133 (1984).

    Google Scholar 

  111. S.M. Hook, Bounds for the fundamental frequencies of an elastic medium, Michigan Math. J. 38, 3–12 (1991).

    MATH  MathSciNet  Google Scholar 

  112. V. Ivrii, Mirolocal Analysis and Precise Spectral Asymptotics, Springer Monographs in Mathematics, Springer, Berlin, 1998.

    Google Scholar 

  113. D. Jerison and C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal. 130, 161–219 (1995).

    MATH  MathSciNet  Google Scholar 

  114. T. Kato, Perturbation Theory for Linear Operators, corr. printingo f the 2nd ed., Springer, Berlin, 1980.

    Google Scholar 

  115. B. Kawohl, H.A. Levine, and W. Velte, Buckling eigenvalue for a clamped plate embedded in an elastic medium and related questions, SIAM J. Math. Anal. 24, 327–340 (1993).

    MATH  MathSciNet  Google Scholar 

  116. V.D. Koshmanenko, Uniqueness of a singularly perturbed operator, Sov.Math.Dokl. 37, 718–721 (1988).

    MATH  MathSciNet  Google Scholar 

  117. V. Koshmanenko, Singular Quadratic Forms in Perturbation Theory, Mathematics and its Applications, Vol. 474, Kluwer, Dordrecht, 1999.

    Google Scholar 

  118. V.A. Kozlov, Estimation of the remainder in a formula for the asymptotic behavior of the spectrum of nonsemibounded elliptic systems, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 1979, no 4., 112–113, 125 (Russian).

    Google Scholar 

  119. V.A. Kozlov, Estimates of the remainder in formulas for the asymptotic behavior of the spectrum for linear operator bundles, Funktsional. Anal. i Prilozhen 17, no. 2, 80–81 (1983). Engl. transl. in Funct. Anal. Appl. 17, no. 2, 147–149 (1983).

    Google Scholar 

  120. V.A. Kozlov, Remainder estimates in spectral asymptotic formulas for linear operator pencils, Linear and Nonlinear Partial Differential Equations. Spectral Asymptotic Behavior, pp. 34–56, Probl. Mat. Anal. 9, Leningrad Univ., Leningrad, 1984; Engl. transl. in J. Sov. Math. 35, 2180–2193 (1986).

    Google Scholar 

  121. V.A. Kozlov, V.A. Kondrat’ev, and V.G. Maz’ya, On sign variation and the absence of “strong” zeros of solutions of elliptic equations, Math. USSR Izv. 34, 337–353 (1990).

    Google Scholar 

  122. E. Krahn, Über Minimaleigenschaften der Kugel in drei und mehr Dimensionen, Acta Comm. Univ. Tartu (Dorpat) A9, 1–44 (1926).

    Google Scholar 

  123. S.G. Krantz and H.R. Parks, The Geometry of Domains in Space, Birkhäuser, Boston, 1999.

    MATH  Google Scholar 

  124. M.G. Krein, The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. I, Mat. Sbornik 20, 431–495 (1947) (Russian).

    Google Scholar 

  125. M.G. Krein, The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. II, Mat. Sbornik 21, 365–404 (1947) (Russian).

    Google Scholar 

  126. M.G. Krein and I.E. Ovcharenko, Q-functions and sc-resolvents of nondensely defined hermitian contractions, Sib.Math. J. 18, 728–746 (1977).

    Google Scholar 

  127. M.G. Krein and I.E. Ovčarenko, Inverse problems for Q-functions and resolvent matrices of positive hermitian operators, Sov.Math. Dokl. 19, 1131–1134 (1978).

    Google Scholar 

  128. M.L. Lapidus and M. van Frankenhuijsen, Fractal Geometry, Complex Dimensions and Zeta Functions. Geometry and Spectra of Fractal Strings, Springer, New York, 2006.

    MATH  Google Scholar 

  129. S.Z. Levendorskii, Distribution of eigenvalues of systems of the form Au = tBu, Funct. Anal. Appl. 17, 149–151 (1983).

    MathSciNet  Google Scholar 

  130. S.Z. Levendorski\( \mathrm{\breve{i}} \), Asymptotics of the spectrum of linear operator pencils, Math. USSR Sbornik 52, 245–266 (1985).

    Google Scholar 

  131. H.A. Levine and M.H. Protter, Unrestricted lower bounds for eigenvalues for classes of elliptic equations and systems of equations with applications to problems in elasticity, Math. Meth. Appl. Sci. 7, 210–222 (1985).

    MATH  MathSciNet  Google Scholar 

  132. H.A. Levine and H.F. Weinberger, Inequalities between Dirichlet and Neumann eigenvalues, Arch. Rat. Mech. Anal. 94, 193–208 (1986).

    MATH  MathSciNet  Google Scholar 

  133. B.V. Loginov and O.V. Makeeva, The pseudoperturbation method in generalized eigenvalue problems, Dokl. Math. 77, 194–197 (2008).

    MATH  MathSciNet  Google Scholar 

  134. K.A. Makarov and E. Tsekanovskii, On µ-scale invariant operators, Meth. Funct. Anal. Top. 13, no. 2, 181–186 (2007).

    Google Scholar 

  135. M.M. Malamud, Certain classes of extensions of a lacunary Hermitian operator, Ukrainian Math. J. 44, No. 2, 190–204 (1992).

    MATH  MathSciNet  Google Scholar 

  136. V.G. Maz’ja, Ph.D. Thesis, Leningrad State University, 1965.

    Google Scholar 

  137. V.G. Maz’ja, Sobolev Spaces, Springer, Berlin, 1985.

    Google Scholar 

  138. V.G. Maz’ja and V.P. Havin, Use of (p, l)-capacity in problems of the theory of exceptional sets, Math. USSR Sbornik 19, no. 4, 547–580 (1973).

    Google Scholar 

  139. V. Maz’ya, M. Mitrea, and T. Shaposhnikova, The Dirichlet problem in Lipschitz domains for higher-order elliptic systems with rough coefficients, J. Analyse Math. 110, 167–239 (2010).

    Google Scholar 

  140. V.G. Maz’ya and T.O. Shaposhnikova, Theory of Multipliers in Spaces of Differentiable Functions, Monographs and Studies in Mathematics, Vol. 23, Pitman (Advanced PublishingProg ram), Boston, MA, 1985.

    Google Scholar 

  141. V.G. Maz’ya and T.O. Shaposhnikova, Higher regularity in the layer potential theory for Lipschitz domains, Indiana Univ. Math. J. 54, no. 1, 99–142 (2005).

    Google Scholar 

  142. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.

    MATH  Google Scholar 

  143. V.A. Mikhaĭlets, Distribution of the eigenvalues of finite multiplicity of Neumann extensions of an elliptic operator, Differentsial’nye Uravneniya 30, 178–179 (1994) (Russian); Engl. transl. in Diff. Eq. 30, 167–168 (1994).

    Google Scholar 

  144. V.A. Mikhailets, Discrete spectrum of the extreme nonnegative extension of the positive elliptic differential operator, in Proceedings of the Ukrainian Mathematical Congress – 2001, Section 7, Nonlinear Analysis, Kyiv, 2006, pp. 80–94.

    Google Scholar 

  145. M. Mitrea and M. Taylor, Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev-Besov space results and the Poisson problem, J. Funct. Anal. 176, 1–79 (2000).

    MATH  MathSciNet  Google Scholar 

  146. M. Mitrea, M. Taylor, and A. Vasy, Lipschitz domains, domains with corners, and the Hodge Laplacian, Commun. Partial Diff. Eq. 30, 1445–1462 (2005).

    MATH  MathSciNet  Google Scholar 

  147. K. Müller, Spherical Harmonics, Lecture Notes in Mathematics, Vol. 17, Springer, Berlin, 1966.

    Google Scholar 

  148. G. Nenciu, Applications of the Kreĭn resolvent formula to the theory of self-adjoint extensions of positive symmetric operators, J. Operator Th. 10, 209–218 (1983).

    MATH  MathSciNet  Google Scholar 

  149. Yu. Netrusov and Yu. Safarov, Weyl asymptotic formula for the Laplacian on domains with rough boundaries, Comm. Math. Phys. 253, no. 2, 481–509 (2005).

    Google Scholar 

  150. L.E. Payne, Inequalities for eigenvalues of membranes and plates, J. Rat. Mech. Anal. 4, 517–529 (1955).

    MATH  Google Scholar 

  151. L.E. Payne, A note on inequalities for plate eigenvalues, J. Math. and Phys. 39, 155–159 (1960).

    MATH  MathSciNet  Google Scholar 

  152. L.E. Payne, Isoperimetric inequalities and their applications, SIAMRev. 9, 453–488 (1967).

    MATH  Google Scholar 

  153. L.E. Payne, Some comments on the past fifty years of isoperimetric inequalities, in Inequalities. Fifty Years on from Hardy, Littlewood and Pólya, W.N. Everitt (ed.), M. Dekker, New York, 1991, pp. 143–161.

    Google Scholar 

  154. L.E. Payne, G. Pólya, and H.F. Weinberger, Sur le quotient de deux fréquences propres consécutives, C. R. Acad. Sci. Paris 241, 917–919 (1955).

    MATH  MathSciNet  Google Scholar 

  155. L.E. Payne, G. Pólya, and H.F. Weinberger, On the ratio of consecutive eigenvalues, J. Math. and Phys. 35, 289–298 (1956).

    MATH  MathSciNet  Google Scholar 

  156. W.V. Petryshyn, On the eigenvalue problem Tu − λSu = 0 with unbounded and nonsymmetric operators T and S, Philos. Trans. Roy. Soc. London Ser. A 262, 413–458 (1968).

    MATH  MathSciNet  Google Scholar 

  157. J. Pipher and G.C. Verchota, Dilation invariant estimates and the boundary Gårding inequality for higher-order elliptic operators, Ann. of Math. 142, 1–38 (1995).

    MATH  MathSciNet  Google Scholar 

  158. A. Posilicano, Self-adjoint extensions of restrictions, Operators and Matrices 2, 483–506 (2008).

    MATH  MathSciNet  Google Scholar 

  159. A. Posilicano and L. Raimondi, Krein’s resolvent formula for self-adjoint extensions of symmetric second-order elliptic differential operators, J. Phys. A: Math. Theor. 42, 015204 (11pp) (2009).

    Google Scholar 

  160. V. Prokaj and Z. Sebestyén, On extremal positive operator extensions, Acta Sci. Math. (Szeged) 62, 485–491 (1996).

    MATH  MathSciNet  Google Scholar 

  161. M. Reed and B. Simon, Methods of Modern Mathematical Physics. II: Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975.

    MATH  Google Scholar 

  162. M. Ruzhansky and M. Sugimoto, Criteria for Bochner’s extension problem, Asymptot. Anal. 66, no. 3–4, 125–138 (2010).

    Google Scholar 

  163. V.S. Rychkov, On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains, J. London Math. Soc. (2), 60, 237–257 (1999).

    Google Scholar 

  164. V. Ryzhov, A general boundary value problem and its Weyl function, Opuscula Math. 27, 305–331 (2007).

    MATH  MathSciNet  Google Scholar 

  165. V. Ryzhov, Weyl–Titchmarsh function of an abstract boundary value problem, operator colligations, and linear systems with boundary control, Compl. Anal. Oper. Th. 3, 289–322 (2009).

    MATH  MathSciNet  Google Scholar 

  166. V. Ryzhov, Spectral boundary value problems and their linear operators, arXiv:0904.0276.

    Google Scholar 

  167. Yu. Safarov and D. Vassiliev, The Asymptotic Distribution of Eigenvalues of Partial Differential Operators, Transl. of Math. Monographs, Vol. 155, Amer. Math. Soc., Providence, RI, 1997.

    Google Scholar 

  168. Z. Sebestyén and E. Sikolya, On Krein–von Neumann and Friedrichs extensions, Acta Sci. Math. (Szeged) 69, 323–336 (2003).

    MATH  MathSciNet  Google Scholar 

  169. B. Simon, The classical moment problem as a self-adjoint finite difference operator, Adv. Math. 137, 82–203 (1998).

    MATH  MathSciNet  Google Scholar 

  170. C.F. Skau, Positive self-adjoint extensions of operators affiliated with a von Neumann algebra, Math. Scand. 44, 171–195 (1979).

    MATH  MathSciNet  Google Scholar 

  171. P. Stollmann, Convergence of Schrödinger operators on varying domains, in Partial Differential Operators and Mathematical Physics, M. Demuth and B.-W. Schulze (eds.), Operator Theory: Advances and Applications, Vol. 78, Birkhäuser, Basel, 1995, pp. 369–374.

    Google Scholar 

  172. O.G. Storozh, On the hard and soft extensions of a nonnegative operator, J. Math. Sci. 79, 1378–1380 (1996).

    MathSciNet  Google Scholar 

  173. A.V. Štraus, On extensions of a semibounded operator, Sov.Math. Dokl. 14, 1075– 1079 (1973).

    MATH  Google Scholar 

  174. N.N. Tarkhanov, The Cauchy Problem for Solutions of Elliptic Equations, Mathematical Topics, Vol. 7, Akademie Verlag, Berlin, 1995.

    Google Scholar 

  175. C. Tretter, Linear operator pencils A − λB with discrete spectrum, Integ ral Equ. Operator Th. 37, 357–373 (2000).

    MATH  MathSciNet  Google Scholar 

  176. H. Triebel, Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers, Rev. Mat. Complut. 15, 475–524 (2002).

    Google Scholar 

  177. H. Triebel, The dichotomy between traces on d-sets Γ inn and the density of D(ℝn Γ) in function spaces, Acta Math. Sin. (Engl. Ser.) 24, no. 4, 539–554 (2008).

    Google Scholar 

  178. E.R. Tsekanovskii, Non-self-adjoint accretive extensions of positive operators and theorems of Friedrichs–Krein–Phillips, Funct. Anal. Appl. 14, 156–157 (1980).

    MathSciNet  Google Scholar 

  179. E.R. Tsekanovskii, Friedrichs and Krein extensions of positive operators and holomorphic contraction semigroups, Funct. Anal. Appl. 15, 308–309 (1981).

    MathSciNet  Google Scholar 

  180. E.R. Tsekanovskii, Characteristic function and sectorial boundary value problems, Trudy Inst. Mat. (Novosibirsk) 7, 180–194, 200 (1987), Issled. Geom. Mat. Anal. (Russian).

    Google Scholar 

  181. E.R. Tsekanovskii, Accretive extensions and problems on the Stieltjes operatorvalued functions realizations, in Operator Theory and Complex Analysis, T. Ando and I. Gohberg( eds.), Operator Theory: Advances and Applications, Vol. 59, Birkhäuser, Basel, 1992, pp. 328–347.

    Google Scholar 

  182. M.L. Vi\( \mathrm{\breve{s}} \)ik, On general boundary problems for elliptic differential equations, Trudy Moskov. Mat. Obsc. 1, 187–246 (1952) (Russian); Engl. transl. in Amer. Math. Soc. Transl. (2), 24, 107–172 (1963).

    Google Scholar 

  183. J. von Neumann, Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren, Math. Ann. 102, 49–131 (1929–30).

    Google Scholar 

  184. G.N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge University Press, Cambridge, 1996.

    Google Scholar 

  185. J. Weidmann, Linear Operators in Hilbert Spaces, Graduate Texts in Mathematics, Vol. 68, Springer, New York, 1980.

    Google Scholar 

  186. J. Weidmann, Stetige Abhängigkeit der Eigenwerte und Eigenfunktionen elliptischer Differentialoperatoren vom Gebiet, Math. Scand. 54, 51–69 (1984).

    MATH  MathSciNet  Google Scholar 

  187. J. Weidmann, Lineare Operatoren in Hilberträumen. Teil II: Anwendungen, Teubner, Wiesbaden, Germany, 2003. (German).

    Google Scholar 

  188. H. Weyl, Über die Abhängigkeit der Eigenschwingungen einer Membran und deren Begrenzung, J. reine angew. Math. 141, 1–11 (1912).

    MATH  MathSciNet  Google Scholar 

  189. H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann. 71, 441–479 (1912).

    MATH  MathSciNet  Google Scholar 

  190. H. Weyl, Ramifications, old and new, of the eigenvalue problem, Bull. Amer. Math. Soc. 56, 115–139 (1950).

    MATH  MathSciNet  Google Scholar 

  191. W.P. Ziemer, Weakly Differentiable Functions, Graduate Texts in Mathematics, Vol. 120, Springer, New York, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Ashbaugh .

Editor information

Editors and Affiliations

Additional information

Dedicated with great pleasure to Michael Demuth on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this paper

Cite this paper

Ashbaugh, M.S., Gesztesy, F., Mitrea, M., Shterenberg, R., Teschl, G. (2013). A Survey on the Krein–von Neumann Extension, the Corresponding Abstract Buckling Problem, and Weyl-type Spectral Asymptotics for Perturbed Krein Laplacians in Nonsmooth Domains. In: Demuth, M., Kirsch, W. (eds) Mathematical Physics, Spectral Theory and Stochastic Analysis. Operator Theory: Advances and Applications(), vol 232. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0591-9_1

Download citation

Publish with us

Policies and ethics