Skip to main content

Localization of Relative Entropy in Bose–Einstein Condensation of Trapped Interacting Bosons

  • Conference paper
  • First Online:
Seminar on Stochastic Analysis, Random Fields and Applications VII

Part of the book series: Progress in Probability ((PRPR,volume 67))

Abstract

We consider a system of interacting diffusions which is naturally associated to the ground state of the Hamiltonian of a system of N pairinteracting bosons and we give a detailed description of the phenomenon of the “localization of the relative entropy”. The method is based on peculiar rescaling properties of the mean energy functional

Mathematics Subject Classification (2010). 60 G 40, 81 S 20.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Adami, F. Golse, and A. Teta, Rigorous derivation of the cubic NLS in dimension one. Journal of Statistical Physics, 127 (2007), 1193–1220.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Adams, J.B. Bru, andW.König, Large systems of path-repellent Brownian motions in a trap at positive temperature. EJP, 11 (2006), 460–485.

    Google Scholar 

  3. V. Betz and D. Ueltschi, Spatial random permutations and infinite cycles. Comm. Math. Phys., 285 (2009), 469–501.

    Article  MathSciNet  MATH  Google Scholar 

  4. N.N. Bogolubov, On the theory of superfluidity. J. Phys. (USSR), 11 (1947), 23–32.

    MathSciNet  Google Scholar 

  5. E.P. Gross, Structure of a quantized vortex in boson system. Nuovo Cimento, 20 (1971), 454–477.

    Article  Google Scholar 

  6. N. Eisenbaum, A Cox process involved in the Bose–Einstein condensation. Annales Henri Poincaré, 9 (2008), 1123–1140.

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Tamura and K.R. Ito, A canonical ensemble approach to the Fermion/Boson random point processes and its applications. Commun. Math. Phys., 263 (2006), 353–380.

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Tamura and K.R. Ito, A random point field related to Bose–Einstein condensation. J. Funct. Anal., 243 (2007), 207–231.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Tamura and V.A. Zagrebnov, Mean-field interacting Boson random point fields in weak harmonic traps. J. Math. Phys., 50 (2009), 023301, 1–28.

    Google Scholar 

  10. H. Tamura and V.A. Zagrebnov, Large deviation principle for non-interacting Boson random point processes. J. Math. Phys., 51 (2010), 023528, 1–20.

    Google Scholar 

  11. K.H. Fichtner, On the position distribution of the ideal Bose gas. Math. Nachr., 151 (1991), 59–67.

    Article  MathSciNet  MATH  Google Scholar 

  12. K.H. Fichtner and W. Freudenberg, Characterization of states of infinite boson systems. I: On the construction of states of boson systems. Commun. Math. Phys., 137 (1991), 315–357.

    Google Scholar 

  13. K.H. Fichtner and W. Freudenberg, Point processes and the position distribution of infinite boson systems. J. Stat. Phys., 47 (1987), 959–978.

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Gallavotti, J.L. Lebowitz, and V. Mastropietro, Large deviations in rarified quantum gases. J. Stat. Phys., 108 (2002), 831–861.

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Carlen, Conservative diffusions. Commun. Math. Phys., 94 (1984), 293–315.

    Google Scholar 

  16. E. Carlen, Stochastic mechanics: a look back and a look ahead. In: Diffusion, Quantum Theory and Radically Elementary Mathematics, William G. Faris (editor), Princeton: Princeton University Press, 2006, Chapter 5.

    Google Scholar 

  17. J.L. Doob, Classical Potential Theory and Its Probabilistic Counterpart. Springer, New York, 1984.

    Google Scholar 

  18. F. Guerra and L. Morato, Quantization of dynamical systems and stochastic control theory. Phys. Rev. D, 27 (1983), 1774–1786.

    Article  MathSciNet  Google Scholar 

  19. L. Erdös, B. Schlein, and H.-T. Yau, Rigorous derivation of the Gross–Pitaevskii equation. Phys. Rev. Lett., 98 (2007), 040404, 1–4.

    Google Scholar 

  20. E.H. Lieb and R. Seiringer, Derivation of the Gross–Pitaevskii equation for rotating Bose gas. Comm. Math. Phys., 264 (2006), 505–537.

    Article  MathSciNet  MATH  Google Scholar 

  21. E.H. Lieb, R. Seiringer, and J. Yngvason, Bosons in a trap: a rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A, 61 (2000), 043602, 1–13.

    Google Scholar 

  22. E.H. Lieb and R. Seiringer, Proof of Bose–Einstein condensation for dilute trapped gases. Phys. Rev. Lett., 88 (2002), 170409, 1–4.

    Google Scholar 

  23. E.H. Lieb, R. Seiringer, J.P. Solovej, and J. Yngvason, The Mathematics of the Bose Gas and its Condensation. Basel: Birkhäuser Verlag, 2005.

    Google Scholar 

  24. E.H. Lieb and J. Yngvason, Ground state energy of the low density Bose gas. Phys. Rev. Lett., 80 (1998), 2504–2507.

    Article  Google Scholar 

  25. F.J. Dyson, Ground-state energy of hard-sphere gas. Phys. Rev., 107 (1957), 20–26.

    Article  Google Scholar 

  26. M. Loffredo and L. Morato, Stochastic quantization for a system of N identical interacting Bose particles. J. Phys. A: Math. Theor., 40 (2007), 8709–8722.

    Article  MathSciNet  MATH  Google Scholar 

  27. E. Nelson, Dynamical Theories of Brownian Motion. Princeton: Princeton University Press, 1966.

    Google Scholar 

  28. L.P. Pitaevskii, Vortex lines in an imperfect Bose gas. Sov. Phys.-JETP, 13 (1961), 451–454.

    MathSciNet  Google Scholar 

  29. M. Reed and B. Simon, Modern Mathematical Physics IV. Academic Press, 1978.

    Google Scholar 

  30. D. Revuz and M. Yor, Continuous Martingales and Brownian Motion. Berlin: Springer, 2001.

    Google Scholar 

  31. S. Albeverio, L.M. Morato, and S. Ugolini, Non-symmetric diffusions and related Hamiltonians. Potential Analysis, 8 (1998), 195–204.

    Article  MathSciNet  MATH  Google Scholar 

  32. L.M. Morato and S. Ugolini, Stochastic Description of a Bose–Einstein Condensate. Annales Henri Poincaré, 12 (2011), 1601–1612.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura M. Morato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this paper

Cite this paper

Morato, L.M., Ugolini, S. (2013). Localization of Relative Entropy in Bose–Einstein Condensation of Trapped Interacting Bosons. In: Dalang, R., Dozzi, M., Russo, F. (eds) Seminar on Stochastic Analysis, Random Fields and Applications VII. Progress in Probability, vol 67. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0545-2_9

Download citation

Publish with us

Policies and ethics