Skip to main content

O2 Imaging in Biological Specimens

  • Chapter
  • First Online:
Book cover Phosphorescent Oxygen-Sensitive Probes

Abstract

This chapter describes the fundamentals of an O2 imaging technique based on the quenched-phosphorescence detection of Pt-porphyrin probes. The wide-field, confocal and multi-photon microscopy and methodological aspects of quenched phosphorescence icO2 imaging techniques, theoretical and practical considerations, are briefly described and critically assessed. This is followed by a comprehensive set of practical examples in which the imaging of various biological models, including conventional cell cultures, spheroids (neurospheres), larger organisms such as C. elegans worms and microfluidic devices were analysed. Critical factors that determine the performance of such imaging experiments are also identified and discussed providing a broad prospective on the possible applications of these techniques, particularly in the studies of cell and tissue physiology, the role of O2 in metabolism, hypoxia and other areas of biomedical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Papkovsky DB (2010) Live cell imaging: methods and protocols, Meth Mol Biol, vol 591. Humana Press, 367p

    Google Scholar 

  2. Nägerl UV, Willig KI, Hein B, Hell SW, Bonhoeffer T (2008) Live-cell imaging of dendritic spines by STED microscopy. Proc Nat Acad Sci 105:18982–18987

    Article  PubMed  Google Scholar 

  3. Wenus J, Dussmann H, Paul P, Kalamatianos D, Rehm M, Wellstead P, Prehn J, Huber H (2009) ALISSA: an automated live-cell imaging system for signal transduction analyses. Biotechniques 47:1033–1040

    Article  PubMed  CAS  Google Scholar 

  4. Rehm M, Huber HJ, Hellwig CT, Anguissola S, Dussmann H, Prehn JH (2009) Dynamics of outer mitochondrial membrane permeabilization during apoptosis. Cell Death Differ 16:613–623

    Article  PubMed  CAS  Google Scholar 

  5. Carlin LM, Makrogianneli K, Keppler M, Fruhwirth GO, Ng T (2010) Visualisation of signalling in immune cells. Methods Mol Biol 616:97–113

    Article  PubMed  CAS  Google Scholar 

  6. Wouters FS, Verveer PJ, Bastiaens PIH (2001) Imaging biochemistry inside cells. Trends Cell Biol 11:203–211

    Article  PubMed  CAS  Google Scholar 

  7. Lippincott-Schwartz J (2011) Emerging in vivo analyses of cell function using fluorescence imaging. Annu Rev Biochem 80:327–332

    Article  PubMed  CAS  Google Scholar 

  8. Wilt BA, Burns LD, Wei Ho ET, Ghosh KK, Mukamel EA, Schnitzer MJ (2009) Advances in light microscopy for neuroscience. Ann Rev Neurosci 32:435–506

    Google Scholar 

  9. Becker W, Bergmann A, Biskup C (2007) Multispectral fluorescence lifetime imaging by TCSPC. Microsc Res Tech 70:403–409

    Article  PubMed  CAS  Google Scholar 

  10. Devor A, Sakadzic S, Srinivasan VJ, Yaseen MA, Nizar K, Saisan PA, Tian P, Dale AM, Vinogradov SA, Franceschini MA, Boas DA (2012) Frontiers in optical imaging of cerebral blood flow and metabolism. J Cereb Blood Flow Metab

    Google Scholar 

  11. Bastiaens PIH, Squire A (1999) Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol 9:48–52

    Article  PubMed  CAS  Google Scholar 

  12. Dmitriev RI, Papkovsky DB (2012) Optical probes and techniques for O2 measurement in live cells and tissue, Cell Mol Life Sci 69(12):2025–2039

    Google Scholar 

  13. Dunphy I, Vinogradov SA, Wilson DF (2002) Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence. Anal Biochem 310:191–198

    Article  PubMed  CAS  Google Scholar 

  14. Vanderkooi JM, Maniara G, Green TJ, Wilson DF (1987) An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence. J Biol Chem 262:5476–5482

    PubMed  CAS  Google Scholar 

  15. Ast C, Schmälzlin E, Löhmannsröben H-G, van Dongen JT (2012) Optical Oxygen Micro- and Nanosensors for Plant Applications. Sensors 12:7015–7032

    Article  PubMed  CAS  Google Scholar 

  16. Lakowicz JR, Masters BR (2008) Principles of fluorescence spectroscopy. J Biomed Optics 13:029901–029902

    Article  Google Scholar 

  17. Liebsch G, Klimant I, Frank B, Holst G, Wolfbeis OS (2000) Luminescence lifetime imaging of oxygen, pH, and carbon dioxide distribution using optical sensors. Appl Spectrosc 54:548–559

    Article  CAS  Google Scholar 

  18. Fercher A, O’Riordan TC, Zhdanov AV, Dmitriev RI, Papkovsky DB (2010) Imaging of cellular oxygen and analysis of metabolic responses of mammalian cells. Methods Mol Biol 591:257–273

    Article  PubMed  CAS  Google Scholar 

  19. Becker W, Su B, Holub O, weisshart K. (2010) FLIM and FCS detection in laser-scanning microscopes: Increased efficiency by GaAsP hybrid detectors. Microscop Res Tech 74:804–811

    Google Scholar 

  20. Periasamy A, Diaspro A (2003) Multiphoton microscopy. J Biomed Opt 8:327–328

    Article  PubMed  Google Scholar 

  21. Mills JD, Stone JR, Rubin DG, Melon DE, Okonkwo DO, Periasamy A, Helm GA (2003) Illuminating protein interactions in tissue using confocal and two-photon excitation fluorescent resonance energy transfer microscopy. J Biomed Opt 8:347–356

    Article  PubMed  CAS  Google Scholar 

  22. Lecoq J, Parpaleix A, Roussakis E, Ducros M, Houssen YG, Vinogradov SA, Charpak S (2011) Simultaneous two-photon imaging of oxygen and blood flow in deep cerebral vessels. Nat Med 17:893–898

    Article  PubMed  CAS  Google Scholar 

  23. Sakadzic S, Roussakis E, Yaseen MA, Mandeville ET, Srinivasan VJ, Arai K, Ruvinskaya S, Devor A, Lo EH, Vinogradov SA, Boas DA (2010) Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue. Nat Meth 7:755–759

    Article  CAS  Google Scholar 

  24. Patterson MS, Madsen SJ, Wilson BC (1990) Experimental tests of the feasibility of singlet oxygen luminescence monitoring in vivo during photodynamic therapy. J Photochem Photobiol, B 5:69–84

    Article  CAS  Google Scholar 

  25. Fercher A, Borisov SM, Zhdanov AV, Klimant I, Papkovsky DB (2011) Intracellular O2 sensing probe based on cell-penetrating phosphorescent nanoparticles. ACS Nano 5:5499–5508

    Article  PubMed  CAS  Google Scholar 

  26. Kondrashina AV, Dmitriev RI, Borisov SM, Klimant I, O’Brian I, Nolan YM, Zhdanov AV, Papkovsky DB (2012) A phosphorescent nanoparticles based probe for sensing and imaging of (intra)cellular oxygen in multiple detection modalities. Adv Funct Mater. doi:10.1002/adfm.201201387 (in press)

  27. Waters JC (2009) Accuracy and precision in quantitative fluorescence microscopy. J Cell Biol 185:1135–1148

    Article  PubMed  CAS  Google Scholar 

  28. Murray JM (2011) Methods for imaging thick specimens: confocal microscopy, deconvolution, and structured illumination. Cold Spring Harbor Protocols 2011, pdb.top066936

    Google Scholar 

  29. Sarder P, Nehorai A (2006) Deconvolution methods for 3-D fluorescence microscopy images. Signal Process Mag, IEEE 23:32–45

    Article  Google Scholar 

  30. Mertz J (2011) Optical sectioning microscopy with planar or structured illumination. Nat Meth 8:811–819

    Article  CAS  Google Scholar 

  31. Pawley JB (1994) Sources of noise in three-dimensional microscopical data sets. In: Three-dimensional confocal microscopy: volume investigation of biological specimens (J.K. Stevens, L. R. M., J.E. Trogadis, Ed.), pp 47–94, Academic Press, San Diego

    Google Scholar 

  32. Huang B, Jones SA, Brandenburg B, Zhuang X (2008) Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat Meth 5:1047–1052

    Article  CAS  Google Scholar 

  33. Zhdanov AV, Ogurtsov VI, Taylor CT, Papkovsky DB (2010) Monitoring of cell oxygenation and responses to metabolic stimulation by intracellular oxygen sensing technique. Integr Biol 2:443–451

    Article  CAS  Google Scholar 

  34. Finikova OS, Lebedev AY, Aprelev A, Troxler T, Gao F, Garnacho C, Muro S, Hochstrasser RM, Vinogradov SA (2008) Oxygen microscopy by two-photon-excited phosphorescence. Chem Phys Chem 9:1673–1679

    Article  PubMed  CAS  Google Scholar 

  35. Sakadzic S, Roussakis E, Yaseen MA, Mandeville ET, Srinivasan VJ, Arai K, Ruvinskaya S, Wu W, Devor A, Lo EH, Vinogradov SA, Boas DA (2011) Cerebral blood oxygenation measurement based on oxygen-dependent quenching of phosphorescence. J Vis Exp e1694.

    Google Scholar 

  36. Wilson DF, Finikova OS, Lebedev AY, Apreleva S, Pastuszko A, Lee WM, Vinogradov SA (2011) Measuring oxygen in living tissue: intravascular, interstitial, and “tissue” oxygen measurements. Adv Exp Med Biol 701:53–59

    Google Scholar 

  37. Zhdanov AV, Dmitriev RI, Papkovsky DB (2010) Bafilomycin A1 activates respiration of neuronal cells via uncoupling associated with flickering depolarization of mitochondria. Cell Mol Life Sci 68:903–917

    Article  PubMed  Google Scholar 

  38. Lo JF, Wang Y, Blake A, Yu G, Harvat TA, Jeon H, Oberholzer J, Eddington DT (2012) Islet preconditioning via multimodal microfluidic modulation of intermittent hypoxia. Anal Chem 84:1987–1993

    Article  PubMed  CAS  Google Scholar 

  39. Das S, Srikanth M, Kessler JA (2008) Cancer stem cells and glioma. Nat Clin Pract Neuro 4:427–435

    Article  CAS  Google Scholar 

  40. Mahller YY, Williams JP, Baird WH, Mitton B, Grossheim J, Saeki Y, Cancelas JA, Ratner N, Cripe TP (2009) Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus. PLoS One 4:e4235

    Article  PubMed  Google Scholar 

  41. Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8:3274–3284

    Article  PubMed  CAS  Google Scholar 

  42. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  PubMed  CAS  Google Scholar 

  43. Pevny L, Rao MS (2003) The stem-cell menagerie. Trends Neurosci 26:351–359

    Article  PubMed  CAS  Google Scholar 

  44. Jensen JB, Parmar M (2006) Strengths and limitations of the neurosphere culture system. Mol Neurobiol 34:153–161

    Article  PubMed  CAS  Google Scholar 

  45. Keohane A, Ryan S, Maloney E, Sullivan AM, Nolan YM (2010) Tumour necrosis factor-α impairs neuronal differentiation but not proliferation of hippocampal neural precursor cells: Role of Hes1. Mol Cell Neurosci 43:127–135

    Article  PubMed  CAS  Google Scholar 

  46. Meyvantsson I, Beebe DJ (2008) Cell culture models in microfluidic systems. In: Annual review of analytical chemistry, Annual Reviews, Palo Alto, pp 423–449

    Google Scholar 

  47. El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442:403–411

    Article  PubMed  CAS  Google Scholar 

  48. Skafte-Pedersen P, Hemmingsen M, Sabourin D, Blaga FS, Bruus H, Dufva M (2012) A self-contained, programmable microfluidic cell culture system with real-time microscopy access. Biomed Microdevices 14:385–399

    Article  PubMed  CAS  Google Scholar 

  49. Ogurtsov VI, Hynes J, Will Y, Papkovsky DB (2008) Data analysis algorithm for high throughput enzymatic oxygen consumption assays based on quenched-fluorescence detection. Sens Actuators B: Chem 129:581–590

    Article  Google Scholar 

  50. Wheelan SJ, Boguski MS, Duret L, Makałowski W (1999) Human and nematode orthologs: lessons from the analysis of 1800 human genes and the proteome of Caenorhabditis elegance. Gene 238:163–170

    Article  PubMed  CAS  Google Scholar 

  51. Dimitriadi M, Hart AC (2010) Neurodegenerative disorders: insights from the nematode caenorhabditis elegance. Neurobiol Dis 40:4–11

    Article  PubMed  CAS  Google Scholar 

  52. Zitova A, Hynes J, Kollar J, Borisov SM, Klimant I, Papkovsky DB (2010) Analysis of activity and inhibition of oxygen-dependent enzymes by optical respirometry on the Light Cycler system. Anal Biochem 397:144–151

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science Foundation Ireland, grant 07/IN.1/B1804, EU projects FP7-MC-IAPP-2009-230641, FP7-HEALTH-2012-INNOVATION-304842-2. Authors wish to thank the researchers who helped with experiments and results presented in this chapter, particularly Dr. Ruslan I. Dmitriev (Biochemistry Department, University College Cork); Dr. Violine See and Anne Herrmann (Institute of Integrative Biology University of Liverpool, UK)—wide-field imaging of SK-N-AS neurospheres; Dr. Yvonne Nolan and Ian O’Brien (Anatomy department, University College Cork)—isolation of primary neurons from rat brain; Dr. Wolfgang Becker and Axel Bergmann (Becker & Hickl GmbH, Germany)—confocal TCSCP-FLIM measurements; Mr. Zoltan Soltesz and Dr. Mario de Bono (Medical Research Council Laboratory of Molecular Biology, University of Cambridge, UK)—wide-field imaging of C. elegans; Dr. Maciej Skolimowski, Prof. Jenny Emneus (Department of Micro- and Nanotechnology, Technical University of Denmark, Copenhagen), Mr. Norbert Galler (Graz University of Technology, Austria)—measurements in microfluidic biochips; Dr. Sergei Borisov (Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Austria)—synthesis of the microparticle probe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri B. Papkovsky .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Fercher, A., Zhdanov, A.V., Papkovsky, D.B. (2012). O2 Imaging in Biological Specimens. In: Phosphorescent Oxygen-Sensitive Probes. SpringerBriefs in Biochemistry and Molecular Biology. Springer, Basel. https://doi.org/10.1007/978-3-0348-0525-4_3

Download citation

Publish with us

Policies and ethics