Skip to main content

The Gelatinases and Their Inhibitors: The Structure–Activity Relationships

  • Chapter
  • First Online:
Matrix Metalloproteinase Inhibitors

Part of the book series: Experientia Supplementum ((EXS,volume 103))

Abstract

The interest in gelatinases is increased because of their association in diverse human diseases, though the relationship between MMP expression and disease progression is very complex and varies in cell to cell. Targeting gelatinases in disease treatment is complicated by the fact that gelatinases are indispensable for normal development and physiology due to their multifunctionality, possible functional redundancy, context-dependent expression, and activity. They are secreted as inactive zymogens which are processed to become active by removal of N-terminal propeptide. The folded conformation of zymogen is required to keep the gelatinases in its latency. Acting on a broad spectrum of extracellular substrates, the gelatinases (both MMP-2 and MMP-9) are critical to the biological processes. Three-dimensional structures of gelatinase–inhibitor complexes and inhibition profiles of compounds screened on them provide an invaluable source to gain insight into the structural determinants as well as functional selectivity. The quest for selective MMP inhibitors (MMPIs) still remains a challenge in search of successful clinical candidates. An increased understanding of the structure, regulation, and function of the individual MMPs will likely lead to more effective strategies in the development of highly selective inhibitors for any given MMP that can then be exploited to achieve the desired drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APMA:

4-Aminophenylmercuric acetate

GAG:

Glycosaminoglycan

GA:

Genetic algorithm

LRP:

Low-density lipoprotein receptor-related protein

NGAIL:

Neutrophil gelatinase-associated lipocalin

MLR:

Multiple linear regression

MMPs:

Matrix metalloproteinases

ROS:

Reactive oxygen species

TGFβ:

Transforming growth factor β

TIMPs:

Tissue inhibitors of metalloproteinases

VEGF:

Vascular endothelial growth factor

VCAM:

Vascular cell adhesion molecule

References

  • Aimes RT, Quigley JP (1995) Matrix metalloproteinase-2 is an interstitial collagenase. J Biol Chem 270:5872–5876

    PubMed  CAS  Google Scholar 

  • Albini A, Melchiori A, Santi L, Liotta LA, Brown PD, Stetler-Stevenson WG (1991) Tumor cell invasion inhibited by TIMP-2. J Natl Cancer Inst 83:775–779

    PubMed  CAS  Google Scholar 

  • Allan JA, Docherty AJ, Barker PJ, Huskisson NS, Reynolds JJ, Murphy G (1995) Binding of gelatinases A and B to type-I collagen and other matrix components. Biochem J 309(Pt 1):299–306

    PubMed  CAS  Google Scholar 

  • Aoudjit F, Potworowski EF, St-Pierre Y (1998) Bi-directional induction of matrix metalloproteinase-9 and tissue inhibitor of matrix metalloproteinase-1 during T lymphoma/endothelial cell contact: implication of ICAM-1. J Immunol 160:2967–2973

    PubMed  CAS  Google Scholar 

  • Apte SS, Mattei MG, Olsen BR (1994) Cloning of the cDNA encoding human tissue inhibitor of metalloproteinases-3 (TIMP-3) and mapping of the TIMP3 gene to chromosome 22. Genomics 19:86–90

    PubMed  CAS  Google Scholar 

  • Ardi VC, Kupriyanova TA, Deryugina EI, Quigley JP (2007) Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proc Nat Acad Sci USA 104:20262–20267

    PubMed  CAS  Google Scholar 

  • Babine RE, Bender SL (1997) Molecular recognition of protein-ligand complexes: applications to drug design. Chem Rev 97:1359–1472

    PubMed  CAS  Google Scholar 

  • Baker AH, George SJ, Zaltsman AB, Murphy G, Newby AC (1999) Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. Br J Cancer 79:1347–1355

    PubMed  CAS  Google Scholar 

  • Bauer EA, Stricklin GP, Jeffrey JJ, Eisen AZ (1975) Collagenase production by human skin fibroblasts. Biochem Biophys Res Commun 64:232–240

    PubMed  CAS  Google Scholar 

  • Bergers G (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2:737–744

    PubMed  CAS  Google Scholar 

  • Bertini I, Calderone V, Fragai M, Luchinat C, Mangani S, Terni B (2003) X-ray structures of binary and ternary enzyme-product-inhibitor complexes of matrix metalloproteinases. Angew Chem Int Ed Engl 42:2673–2676

    PubMed  CAS  Google Scholar 

  • Berton A, Godeau G, Emonard H, Baba K, Bellon P, Hornebeck W, Bellon G (2000) Analysis of the ex vivo specificity of human gelatinases A and B towards skin collagen and elastic fibers by computerized morphometry. Matrix Biol 19:139–148

    PubMed  CAS  Google Scholar 

  • Bigg HF, Morrison CJ, Butler GS, Bogoyevitch MA, Wang Z, Soloway PD, Overall CM (2001) Tissue inhibitor of metalloproteinases-4 inhibits but does not support the activation of gelatinase A via efficient inhibition of membrane type 1-matrix metalloproteinase. Cancer Res 61:3610–3618

    PubMed  CAS  Google Scholar 

  • Bjorklund M, Koivunen E (2005) Gelatinase-mediated migration and invasion of cancer cells. Biochim Biophys Acta 1755:37–69

    PubMed  Google Scholar 

  • Black RA (2004) TIMP3 checks inflammation. Nat Genet 36:934–935

    PubMed  CAS  Google Scholar 

  • Blobel CP (2002) Functional and biochemical characterization of ADAMs and their predicted role in protein ectodomain shedding. Inflamm Res 51:83–84

    PubMed  CAS  Google Scholar 

  • Boujrad N, Ogwuegbu SO, Garnier M, Lee CH, Martin BM, Papadopoulos V (1995) Identification of a stimulator of steroid hormone synthesis isolated from testis. Science 268:1609–1612

    PubMed  CAS  Google Scholar 

  • Brehmer B, Biesterfeld S, Jakse G (2003) Expression of matrix metalloproteinases (MMP-2 and -9) and their inhibitors (TIMP-1 and -2) in prostate cancer tissue. Prostate Cancer Prostatic Dis 6:217–222

    PubMed  CAS  Google Scholar 

  • Brekken RA, Sage EH (2000) SPARC, a multicellular protein: at the crossroads of cell-matrix. Matrix Biol 19:569–580

    PubMed  CAS  Google Scholar 

  • Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477:267–283

    PubMed  CAS  Google Scholar 

  • Briknarova K, Grishaev A, Banyai L, Tordai H, Patthy L, Llinas M (1999) The second type II module from human matrix metalloproteinase 2: structure, function and dynamics. Structure 7:1235–1245

    PubMed  CAS  Google Scholar 

  • Bu CH, Pourmotabbed T (1996) Mechanism of Ca2+-dependent activity of human neutrophil gelatinase B. J Biol Chem 271:14308–14315

    PubMed  CAS  Google Scholar 

  • Butler GS, Hutton M, Wattam BA, Williamson RA, Knauper V, Willenbrock F, Murphy G (1999) The specificity of TIMP-2 for matrix metalloproteinases can be modified by single amino acid mutations. J Biol Chem 274:20391–20396

    PubMed  CAS  Google Scholar 

  • Caterina JJ, Yamada S, Caterina NC, Longenecker G, Holmback K, Shi J, Yermovsky AE, Engler JA, Birkedal-Hansen H (2000) Inactivating mutation of the mouse tissue inhibitor of metalloproteinases-2 (Timp-2) gene alters proMMP-2 activation. J Biol Chem 275:26416–26422

    PubMed  CAS  Google Scholar 

  • Cauwe B, Van den Steen PE, Opdenakker G (2007) The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit Rev Biochem Mol Biol 42:113–185

    PubMed  CAS  Google Scholar 

  • Chakrabarti S, Patel KD (2005) Matrix metalloproteinase-2 (MMP-2) and MMP-9 in pulmonary pathology. Exp Lung Res 31:599–621

    PubMed  CAS  Google Scholar 

  • Cherney RJ, Mo R, Meyer DT, Hardman KD, Liu RQ, Covington MB, Qian M, Wasserman ZR, Christ DD, Trzaskos JM, Newton RC, Decicco CP (2004) Sultam hydroxamates as novel matrix metalloproteinase inhibitors. J Med Chem 47:2981–2983

    PubMed  CAS  Google Scholar 

  • Colnot C, Thompson Z, Miclau T, Werb Z, Helms JA (2003) Altered fracture repair in the absence of MMP9. Development 130:4123–4133

    PubMed  CAS  Google Scholar 

  • Corry DB (2002) Decreased allergic lung inflammatory cell egression and increased susceptibility to asphyxiation in MMP2-deficiency. Nat Immunol 3:347–353

    PubMed  CAS  Google Scholar 

  • Corry DB (2004) Overlapping and independent contributions of MMP2 and MMP9 to lung allergic inflammatory cell aggression through decreased CC chemokines. FASEB J 18:995–997

    PubMed  CAS  Google Scholar 

  • Coussens LM, Tinkle CL, Hanahan D, Werb Z (2000) MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103:481–490

    PubMed  CAS  Google Scholar 

  • Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392

    PubMed  CAS  Google Scholar 

  • Crocker SJ, Pagenstecher A, Campbell IL (2004) The TIMPs tango with MMPs and more in the central nervous system. J Neurosci Res 75:1–11

    PubMed  CAS  Google Scholar 

  • Davis GE (1991) Identification of an abundant latent 94-kDa gelatin-degrading metalloprotease in human saliva which is activated by acid exposure: implications for a role in digestion of collagenous proteins. Arch Biochem Biophys 286:551–554

    PubMed  CAS  Google Scholar 

  • De Clerck Y, Szpirer C, Aly MS, Cassiman JJ, Eeckhout Y, Rousseau G (1992) The gene for tissue inhibitor of metalloproteinases-2 is localized on human chromosome arm 17q25. Genomics 14:782–784

    PubMed  Google Scholar 

  • Deem TL, Cook-Mills JM (2004) Vascular cell adhesion molecule 1 (VCAM-1) activation of endothelial cell matrix metalloproteinases: role of reactive oxygen species. Blood 104:2385–2393

    PubMed  CAS  Google Scholar 

  • Descamps FJ, Martens E, Opdenakker G (2002) Analysis of gelatinases in complex biological fluids and tissue extracts. Lab Invest 82:1607–1608

    PubMed  Google Scholar 

  • Di Girolamo N (2006) Human mast cell-derived gelatinase B (matrix metalloproteinase-9) is regulated by inflammatory cytokines: role in cell migration. J Immunol 177:2638–2650

    PubMed  Google Scholar 

  • Douglas DA, Shi YE, Sang QA (1997) Computational sequence analysis of the tissue inhibitor of metalloproteinase family. J Protein Chem 16:237–255

    PubMed  CAS  Google Scholar 

  • Dubois B (2002) Gelatinase B deficiency protects against endotoxin shock. Eur J Immunol 32:2163–2171

    PubMed  CAS  Google Scholar 

  • Emonard H, Bellon G, Troeberg L, Berton A, Robinet A, Henriet P, Marbaix E, Kirkegaard K, Patthy L, Eeckhout Y, Nagase H, Hornebeck W, Courtoy PJ (2004) Low density lipoprotein receptor-related protein mediates endocytic clearance of Pro-MMP-2·TIMP-2 complex through a thrombospondin-independent mechanism. J Biol Chem 279:54944–54951

    PubMed  CAS  Google Scholar 

  • Fernandez-Catalan C, Bode W, Huber R, Turk D, Calvete JJ, Lichte A, Tschesche H, Maskos K (1998) Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor. EMBO J 17:5238–5248

    PubMed  CAS  Google Scholar 

  • Fernandez-Patron C, Radomski MW, Davidge ST (1999) Vascular matrix metalloproteinase-2 cleaves big endothelin-1 yielding a novel vasoconstrictor. Circ Res 85:906–911

    PubMed  CAS  Google Scholar 

  • Fernandez-Patron C, Stewart KG, Zhang Y, Koivunen E, Radomski MW, Davidge ST (2000) Vascular matrix metalloproteinase-2-dependent cleavage of calcitonin gene-related peptide promotes vasoconstriction. Circ Res 87:670–676

    PubMed  CAS  Google Scholar 

  • Fosang AJ, Neame PJ, Last K, Hardingham TE, Murphy G, Hamilton JA (1992) The interglobular domain of cartilage aggrecan is cleaved by PUMP, gelatinases, and cathepsin B. J Biol Chem 267:19470–19474

    PubMed  CAS  Google Scholar 

  • Freyhult EK, Andersson K, Gustafsson MG (2003) Structural modeling extends QSAR analysis of antibody-lysozyme interactions to 3D-QSAR. Biophys J 84:2264–2272

    PubMed  CAS  Google Scholar 

  • Fu X, Kassim SY, Parks WC, Heinecke JW (2001) Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem 276:41279–41287

    PubMed  CAS  Google Scholar 

  • Fu X, Kassim SY, Parks WC, Heinecke JW (2003) Hypochlorous acid generated by myeloperoxidase modifies adjacent tryptophan and glycine residues in the catalytic domain of matrix metalloproteinase-7 (matrilysin): an oxidative mechanism for restraining proteolytic activity during inflammation. J Biol Chem 278:28403–28409

    PubMed  CAS  Google Scholar 

  • Ganguly K, Kundu P, Banerjee A, Reiter RJ, Swarnakar S (2006) Hydrogen peroxide-mediated downregulation of matrix metalloprotease-2 in indomethacin-induced acute gastric ulceration is blocked by melatonin and other antioxidants. Free Radic Biol Med 41:911–925

    PubMed  CAS  Google Scholar 

  • Ganguly K, Sharma AV, Reiter RJ, Swarnakar S (2010) Melatonin promotes angiogenesis during protection and healing of indomethacin-induced gastric ulcer: role of matrix metaloproteinase-2. J Pineal Res 49:130–140

    PubMed  CAS  Google Scholar 

  • Gearing AJ (1994) Processing of tumour necrosis factor precursor by metalloproteinases. Nature 370:555–557

    PubMed  CAS  Google Scholar 

  • Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP (1997) Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol 74:111–122

    PubMed  CAS  Google Scholar 

  • Gomis-Ruth FX, Maskos K, Betz M, Bergner A, Huber R, Suzuki K, Yoshida N, Nagase H, Brew K, Bourenkov GP, Bartunik H, Bode W (1997) Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature 389:77–81

    PubMed  CAS  Google Scholar 

  • Gough PJ, Gomez IG, Wille PT, Raines EW (2006) Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice. J Clin Invest 116:59–69

    PubMed  CAS  Google Scholar 

  • Gouyer V, Conti M, Devos P, Zerimech F, Copin MC, Creme E, Wurtz A, Porte H, Huet G (2005) Tissue inhibitor of metalloproteinase 1 is an independent predictor of prognosis in patients with nonsmall cell lung carcinoma who undergo resection with curative intent. Cancer 103:1676–1684

    PubMed  CAS  Google Scholar 

  • Greene J, Wang M, Liu YE, Raymond LA, Rosen C, Shi YE (1996) Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. J Biol Chem 271:30375–30380

    PubMed  CAS  Google Scholar 

  • Gross J, Lapiere CM (1962) Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci USA 48:1014–1022

    PubMed  CAS  Google Scholar 

  • Hahn-Dantona E, Ramos-DeSimone N, Sipley J, Nagase H, French DL, Quigley JP (1999) Activation of ProMMP-9 by a plasmin/MMP-3 cascade in a tumor cell model: regulation by tissue inhibitors of metalloproteinases. Ann N Y Acad Sci 878:372–387

    PubMed  CAS  Google Scholar 

  • Hammani K, Henriet P, Silbiger SM, DeClerck YA (1996) Cloning and partial structure of the gene encoding human tissue inhibitor of metalloproteinases-3. Gene 170:287–288

    PubMed  CAS  Google Scholar 

  • Han Y-P, Yan C, Garner WL (2008) Proteolytic activation of matrix metalloproteinase-9 in skin wound healing is inhibited by [alpha]-1-antichymotrypsin. J Invest Dermatol 128:2334–2342

    PubMed  CAS  Google Scholar 

  • Hanessian S, Moitessier N, Gauchet C, Viau M (2001) N-Aryl sulfonyl homocysteine hydroxamate inhibitors of matrix metalloproteinases: further probing of the S(1), S(1)′, and S(2)′ pockets. J Med Chem 44:3066–3073

    PubMed  CAS  Google Scholar 

  • Hayakawa T, Yamashita K, Tanzawa K, Uchijima E, Iwata K (1992) Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells. A possible new growth factor in serum. FEBS Lett 298:29–32

    PubMed  CAS  Google Scholar 

  • Heath JK, Meikle MC, Atkinson SJ, Reynolds JJ (1984) A factor synthesized by rabbit periosteal fibroblasts stimulates bone resorption and collagenase production by connective tissue cells in vitro. Biochim Biophys Acta 800:301–305

    PubMed  CAS  Google Scholar 

  • Hill MR, Briggs L, Montano MM, Estrada A, Laurent GJ, Selman M, Pardo A (2004) Promoter variants in tissue inhibitor of metalloproteinase-3 (TIMP-3) protect against susceptibility in pigeon breeders’ disease. Thorax 59:586–590

    PubMed  CAS  Google Scholar 

  • Hu J, Van den Steen PE, Sang QX, Opdenakker G (2007) Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug Discov 6:480–498

    PubMed  CAS  Google Scholar 

  • Iwaki-Egawa S, Watanabe Y, Matsuno H (2001) Correlations between matrix metalloproteinase-9 and adenosine deaminase isozymes in synovial fluid from patients with rheumatoid arthritis. J Rheumatol 28:485–489

    PubMed  CAS  Google Scholar 

  • Janssens S, Lijnen HR (2006) What has been learned about the cardiovascular effects of matrix metalloproteinases from mouse models? Cardiovas Res 69:585–594

    CAS  Google Scholar 

  • Johnson MD, Kim HR, Chesler L, Tsao-Wu G, Bouck N, Polverini PJ (1994) Inhibition of angiogenesis by tissue inhibitor of metalloproteinase. J Cell Physiol 160:194–202

    PubMed  CAS  Google Scholar 

  • Johnson C, Sung HJ, Lessner SM, Fini ME, Galis ZS (2004) Matrix metalloproteinase-9 is required for adequate angiogenic revascularization of ischemic tissues: potential role in capillary branching. Circ Res 94:262–268

    PubMed  CAS  Google Scholar 

  • Kerkela E, Saarialho-Kere U (2003) Matrix metalloproteinases in tumor progression: focus on basal and squamous cell skin cancer. Exp Dermatol 12:109–125

    PubMed  CAS  Google Scholar 

  • Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67

    PubMed  CAS  Google Scholar 

  • Khandaker MH (1999) Metalloproteinases are involved in lipopolysaccharide- and tumor necrosis factor-[alpha]-mediated regulation of CXCR1 and CXCR2 chemokine receptor expression. Blood 93:2173–2185

    PubMed  CAS  Google Scholar 

  • Koch S, Volkmar C, Kolb-Bachofen V, Korth H-G, Kirsch M, Horn A, Sticht H, Pallua N, Suschek C (2009) A new redox-dependent mechanism of MMP-1 activity control comprising reduced low-molecular-weight thiols and oxidizing radicals. J Mol Med 87:261–272

    PubMed  CAS  Google Scholar 

  • Koo B-H, Han JH, Yeom YI, Kim D-S (2010) Thrombin-dependent MMP-2 activity is regulated by heparan sulfate. J Biol Chem 285:41270–41279

    PubMed  CAS  Google Scholar 

  • Kouwenhoven M, Ozenci V, Tjernlund A, Pashenkov M, Homman M, Press R, Link H (2002) Monocyte-derived dendritic cells express and secrete matrix-degrading metalloproteinases and their inhibitors and are imbalanced in multiple sclerosis. J Neuroimmunol 126:161–171

    PubMed  CAS  Google Scholar 

  • Kridel SJ, Chen E, Kotra LP, Howard EW, Mobashery S, Smith JW (2001) Substrate hydrolysis by matrix metalloproteinase-9*. J Biol Chem 276:20572–20578

    PubMed  CAS  Google Scholar 

  • Kundu P, Mukhopadhyay AK, Patra R, Banerjee A, Berg DE, Swarnakar S (2006) Cag pathogenicity island-independent upregulation of matrix metalloproteinases-9 and -2 secretion and expression in mice by Helicobacter pylori infection. J Biol Chem 281:34651–34662

    PubMed  CAS  Google Scholar 

  • Kundu P, De R, Pal I, Mukhopadhyay AK, Saha DR, Swarnakar S (2011) Curcumin alleviates matrix metalloproteinase-3 and -9 activities during eradication of Helicobacter pylori infection in cultured cells and mice. PLoS One 6:e16306

    PubMed  CAS  Google Scholar 

  • Kwan JA, Schulze CJ, Wang W, Leon H, Sariahmetoglu M, Sung M, Sawicka J, Sims DE, Sawicki G, Schulz R (2004) Matrix metalloproteinase-2 (MMP-2) is present in the nucleus of cardiac myocytes and is capable of cleaving poly (ADP-ribose) polymerase (PARP) in vitro. FASEB J 18:690–692

    PubMed  CAS  Google Scholar 

  • Lacraz S, Nicod LP, Chicheportiche R, Welgus HG, Dayer JM (1995) IL-10 inhibits metalloproteinase and stimulates TIMP-1 production in human mononuclear phagocytes. J Clin Invest 96:2304–2310

    PubMed  CAS  Google Scholar 

  • Lafleur MA, Hollenberg MD, Atkinson SJ, Knauper V, Murphy G, Edwards DR (2001) Activation of pro-(matrix metalloproteinase-2) (pro-MMP-2) by thrombin is membrane-type-MMP-dependent in human umbilical vein endothelial cells and generates a distinct 63 kDa active species. Biochem J 357:107–115

    PubMed  CAS  Google Scholar 

  • Lambert E, Dassé E, Haye B, Petitfrère E (2004) TIMPs as multifacial proteins. Crit Rev Oncol/Hematol 49:187–198

    Google Scholar 

  • Larsen MB, Stephens RW, Brunner N, Nielsen HJ, Engelholm LH, Christensen IJ, Stetler-Stevenson WG, Hoyer-Hansen G (2005) Quantification of tissue inhibitor of metalloproteinases 2 in plasma from healthy donors and cancer patients. Scand J Immunol 61:449–460

    PubMed  CAS  Google Scholar 

  • Legrand C (1999) Airway epithelial cell migration dynamics: MMP-9 role in cell-extracellular matrix remodeling. J Cell Biol 146:517–529

    PubMed  CAS  Google Scholar 

  • Lessner SM, Galis ZS (2004) Matrix metalloproteinases and vascular endothelium-mononuclear cell close encounters. Trends Cardiovasc Med 14:105–111

    PubMed  CAS  Google Scholar 

  • Lim IT, Brown S, Mobashery S (2004) A convenient synthesis of a selective gelatinase inhibitor as an antimetastatic agent. J Org Chem 69:3572–3573

    PubMed  CAS  Google Scholar 

  • Liotta LA, Abe S, Robey PG, Martin GR (1979) Preferential digestion of basement membrane collagen by an enzyme derived from a metastatic murine tumor. Proc Nat Acad Sci USA 76:2268–2272

    PubMed  CAS  Google Scholar 

  • Lose F, Thompson PJ, Duffy D, Stewart GA, Kedda MA (2005) A novel tissue inhibitor of metalloproteinase-1 (TIMP-1) polymorphism associated with asthma in Australian women. Thorax 60:623–628

    PubMed  CAS  Google Scholar 

  • Madri JA, Graesser D, Haas T (1996) The roles of adhesion molecules and proteinases in lymphocyte transendothelial migration. Biochem Cell Biol 74:749–757

    PubMed  CAS  Google Scholar 

  • Mahmoodzadeh S, Dworatzek E, Fritschka S, Pham TH, Regitz-Zagrosek V (2010) 17β-Estradiol inhibits matrix metalloproteinase-2 transcription via MAP kinase in fibroblasts. Cardiovas Res 85:719–728

    CAS  Google Scholar 

  • Marin-Castano ME, Csaky KG, Cousins SW (2005) Nonlethal oxidant injury to human retinal pigment epithelium cells causes cell membrane blebbing but decreased MMP-2 activity. Invest Ophthalmol Vis Sci 46:3331–3340

    PubMed  Google Scholar 

  • Marshall A (1999) MMP-2 structure solved. Nat Biotechnol 17:625

    PubMed  Google Scholar 

  • Massova I, Kotra LP, Fridman R, Mobashery S (1998) Matrix metalloproteinases: structures, evolution, and diversification. FASEB J 12:1075–1095

    PubMed  CAS  Google Scholar 

  • Matter H, Schudok M, Schwab W, Thorwart W, Barbier D, Billen G, Haase B, Neises B, Weithmann K, Wollmann T (2002) Tetrahydroisoquinoline-3-carboxylate based matrix-metalloproteinase inhibitors: design, synthesis and structure-activity relationship. Bioorg Med Chem 10:3529–3544

    PubMed  CAS  Google Scholar 

  • Mautino G, Henriquet C, Gougat C, Le Cam A, Dayer JM, Bousquet J, Capony F (1999) Increased expression of tissue inhibitor of metalloproteinase-1 and loss of correlation with matrix metalloproteinase-9 by macrophages in asthma. Lab Invest 79:39–47

    PubMed  CAS  Google Scholar 

  • McCawley LJ, Matrisian LM (2001) Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol 13:534–540

    PubMed  CAS  Google Scholar 

  • McGuire JK, Li Q, Parks WC (2003) Matrilysin (matrix metalloproteinase-7) mediates E-cadherin ectodomain shedding in injured lung epithelium. Am J Pathol 162:1831–1843

    PubMed  CAS  Google Scholar 

  • McMillan SJ (2004) Matrix metalloproteinase-9 deficiency results in enhanced allergen-induced airway inflammation. J Immunol 172:2586–2594

    PubMed  CAS  Google Scholar 

  • Mertens PR, Alfonso-Jaume MA, Steinmann K, Lovett DH (1998) A synergistic interaction of transcription factors AP2 and YB-1 regulates gelatinase A enhancer-dependent transcription. J Biol Chem 273:32957–32965

    PubMed  CAS  Google Scholar 

  • Milner R, Campbell IL (2003) The extracellular matrix and cytokines regulate microglial integrin expression and activation. J Immunol 170:3850–3858

    PubMed  CAS  Google Scholar 

  • Mishra A, Paul S, Swarnakar S (2011) Downregulation of matrix metalloproteinase-9 by melatonin during prevention of alcohol-induced liver injury in mice. Biochimie 93:854–866

    PubMed  CAS  Google Scholar 

  • Mohammad G, Kowluru RA (2011) Novel role of mitochondrial matrix metalloproteinase-2 in the development of diabetic retinopathy. Invest Ophthalmol Vis Sci 52(6):3832–3841

    PubMed  CAS  Google Scholar 

  • Mohammed FF, Pennington CJ, Kassiri Z, Rubin JS, Soloway PD, Ruther U, Edwards DR, Khokha R (2005) Metalloproteinase inhibitor TIMP-1 affects hepatocyte cell cycle via HGF activation in murine liver regeneration. Hepatology 41:857–867

    PubMed  CAS  Google Scholar 

  • Moore WM, Spilburg CA (1986) Peptide hydroxamic acids inhibit skin collagenase. Biochem Biophys Res Commun 136:390–395

    PubMed  CAS  Google Scholar 

  • Morgunova E, Tuuttila A, Bergmann U, Isupov M, Lindqvist Y, Schneider G, Tryggvason K (1999) Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed. Science 284:1667–1670

    PubMed  CAS  Google Scholar 

  • Morgunova E, Tuuttila A, Bergmann U, Tryggvason K (2002) Structural insight into the complex formation of latent matrix metalloproteinase 2 with tissue inhibitor of metalloproteinase 2. Proc Natl Acad Sci USA 99:7414–7419

    PubMed  CAS  Google Scholar 

  • Murphy G, Willenbrock F, Ward RV, Cockett MI, Eaton D, Docherty AJ (1992) The C-terminal domain of 72 kDa gelatinase A is not required for catalysis, but is essential for membrane activation and modulates interactions with tissue inhibitors of metalloproteinases. Biochem J 283(Pt 3):637–641

    PubMed  CAS  Google Scholar 

  • Muskett FW, Frenkiel TA, Feeney J, Freedman RB, Carr MD, Williamson RA (1998) High resolution structure of the N-terminal domain of tissue inhibitor of metalloproteinases-2 and characterization of its interaction site with matrix metalloproteinase-3. J Biol Chem 273:21736–21743

    PubMed  CAS  Google Scholar 

  • Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494

    PubMed  CAS  Google Scholar 

  • Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovas Res 69:562–573

    CAS  Google Scholar 

  • Nelson KK, Melendez JA (2004) Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med 37:768–784

    PubMed  CAS  Google Scholar 

  • Oelmann E, Herbst H, Zuhlsdorf M, Albrecht O, Nolte A, Schmitmann C, Manzke O, Diehl V, Stein H, Berdel WE (2002) Tissue inhibitor of metalloproteinase 1 is an autocrine and paracrine survival factor with additional immune-regulatory functions expressed by Hodgkin/Reed-Sternberg cells. Blood 99:258–267

    PubMed  CAS  Google Scholar 

  • Ogata Y, Itoh Y, Nagase H (1995) Steps involved in activation of the pro-matrix metalloproteinase 9 (Progelatinase B)-tissue inhibitor of metalloproteinases-1 complex by 4-aminophenylmercuric acetate and proteinases. J Biol Chem 270:18506–18511

    PubMed  CAS  Google Scholar 

  • Olson TM, Hirohata S, Ye J, Leco K, Seldin MF, Apte SS (1998) Cloning of the human tissue inhibitor of metalloproteinase-4 gene (TIMP4) and localization of the TIMP4 and Timp4 genes to human chromosome 3p25 and mouse chromosome 6, respectively. Genomics 51:148–151

    PubMed  CAS  Google Scholar 

  • Opdenakker G, Van den Steen PE, Van Damme J (2001) Gelatinase B: a tuner and amplifier of immune functions. Trends Immunol 22:571–579

    PubMed  CAS  Google Scholar 

  • Osman M, Tortorella M, Londei M, Quaratino S (2002) Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases define the migratory characteristics of human monocyte-derived dendritic cells. Immunology 105:73–82

    PubMed  CAS  Google Scholar 

  • Otsuka K, Sodek J, Limeback H (1984) Synthesis of collagenase and collagenase inhibitors by osteoblast-like cells in culture. Eur J Biochem 145:123–129

    PubMed  CAS  Google Scholar 

  • Overall CM (1999) Identification of the tissue inhibitor of metalloproteinases-2 (TIMP-2) binding site on the hemopexin carboxyl domain of human gelatinase A by site-directed mutagenesis. The hierarchical role in binding TIMP-2 of the unique cationic clusters of hemopexin modules III and IV. J Biol Chem 274:4421–4429

    PubMed  CAS  Google Scholar 

  • Overall CM, Lopez-Otin C (2002) Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2:657–672

    PubMed  CAS  Google Scholar 

  • Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233

    PubMed  CAS  Google Scholar 

  • Parks WC (1999) Matrix metalloproteinases in repair. Wound Repair Regen 7:423–432

    PubMed  CAS  Google Scholar 

  • Parks WC, Mecham RP (1998) Matrix Metalloproteinases. Academic Press, New York

    Google Scholar 

  • Parks WC, Wilson CL, Lopez-Boado YS (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4:617–629

    PubMed  CAS  Google Scholar 

  • Paul S, Bhattacharya P, Mahapatra PD, Swarnakar S (2010) Melatonin protects against endometriosis via regulation of matrix metalloproteinase-3 and an apoptotic pathway. J Pineal Res 49:156–168

    PubMed  CAS  Google Scholar 

  • Piccard H, Van den Steen PE, Opdenakker G (2007) Hemopexin domains as multifunctional liganding modules in matrix metalloproteinases and other proteins. J Leukocyte Biol 81:870–892

    PubMed  CAS  Google Scholar 

  • Pickard B, Damjanovski S (2004) Overexpression of the tissue inhibitor of metalloproteinase-3 during Xenopus embryogenesis affects head and axial tissue formation. Cell Res 14:389–399

    PubMed  CAS  Google Scholar 

  • Pikul S, Dunham KM, Almstead NG, De B, Natchus MG, Taiwo YO, Williams LE, Hynd BA, Hsieh LC, Janusz MJ, Gu F, Mieling GE (2001) Heterocycle-based MMP inhibitors with P2′ substituents. Bioorg Med Chem Lett 11:1009–1013

    PubMed  CAS  Google Scholar 

  • Pourmotabbed T, Aelion JA, Tyrrell D, Hasty KA, Bu CH, Mainardi CL (1995) Role of the conserved histidine and aspartic acid residues in activity and stabilization of human gelatinase B: an example of matrix metalloproteinases. J Protein Chem 14:527–535

    PubMed  CAS  Google Scholar 

  • Pradeepkumar Singh L, Kundu P, Ganguly K, Mishra A, Swarnakar S (2007) Novel role of famotidine in downregulation of matrix metalloproteinase-9 during protection of ethanol-induced acute gastric ulcer. Free Radic Biol Med 43:289–299

    PubMed  Google Scholar 

  • Pruijt JF (1999) Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory antibodies against the metalloproteinase gelatinase B (MMP-9). Proc Natl Acad Sci USA 96:10863–10868

    PubMed  CAS  Google Scholar 

  • Qi JH, Ebrahem Q, Yeow K, Edwards DR, Fox PL, Anand-Apte B (2002) Expression of Sorsby’s fundus dystrophy mutations in human retinal pigment epithelial cells reduces matrix metalloproteinase inhibition and may promote angiogenesis. J Biol Chem 277:13394–13400

    PubMed  CAS  Google Scholar 

  • Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS (1996) Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest 98:2572–2579

    PubMed  CAS  Google Scholar 

  • Redondo-Munoz J (2010) Matrix metalloproteinase-9 promotes chronic lymphocytic leukemia B cell survival through its hemopexin domain. Cancer Cell 17:160–172

    PubMed  CAS  Google Scholar 

  • Rowsell S, Hawtin P, Minshull CA, Jepson H, Brockbank SMV, Barratt DG, Slater AM, McPheat WL, Waterson D, Henney AM, Pauptit RA (2002) Crystal structure of human MMP9 in complex with a reverse hydroxamate inhibitor. J Mol Biol 319:173–181

    PubMed  CAS  Google Scholar 

  • Rozanov DV, Hahn-Dantona E, Strickland DK, Strongin AY (2004) The low density lipoprotein receptor-related protein LRP is regulated by membrane type-1 matrix metalloproteinase (MT1-MMP) proteolysis in malignant cells. J Biol Chem 279:4260–4268

    PubMed  CAS  Google Scholar 

  • Salvino JM, Mathew R, Kiesow T, Narensingh R, Mason HJ, Dodd A, Groneberg R, Burns CJ, McGeehan G, Kline J, Orton E, Tang SY, Morrisette M, Labaudininiere R (2000) Solid-phase synthesis of an arylsulfone hydroxamate library. Bioorg Med Chem Lett 10:1637–1640

    PubMed  CAS  Google Scholar 

  • Seltzer JL, Weingarten H, Akers KT, Eschbach ML, Grant GA, Eisen AZ (1989) Cleavage specificity of type IV collagenase (gelatinase) from human skin. Use of synthetic peptides as model substrates. J Biol Chem 264:19583–19586

    PubMed  CAS  Google Scholar 

  • Seo D-W, Li H, Guedez L, Wingfield PT, Diaz T, Salloum R, B-y W, Stetler-Stevenson WG (2003a) TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell 114:171–180

    PubMed  CAS  Google Scholar 

  • Seo DW, Li H, Guedez L, Wingfield PT, Diaz T, Salloum R, Wei BY, Stetler-Stevenson WG (2003b) TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell 114:171–180

    PubMed  CAS  Google Scholar 

  • Sierevogel MJ, Pasterkamp G, de Kleijn DP, Strauss BH (2003) Matrix metalloproteinases: a therapeutic target in cardiovascular disease. Curr Pharm Des 9:1033–1040

    PubMed  CAS  Google Scholar 

  • Sinpitaksakul SN, Pimkhaokham A, Sanchavanakit N, Pavasant P (2008) TGF-[beta]1 induced MMP-9 expression in HNSCC cell lines via Smad/MLCK pathway. Biochem Biophys Res Commun 371:713–718

    PubMed  CAS  Google Scholar 

  • Skiles JW, Gonnella NC, Jeng AY (2001) The design, structure, and therapeutic application of matrix metalloproteinase inhibitors. Curr Med Chem 8:425–474

    PubMed  CAS  Google Scholar 

  • Song H, Li Y, Lee J, Schwartz AL, Bu G (2009) Low-density lipoprotein receptor-related protein 1 promotes cancer cell migration and invasion by inducing the expression of matrix metalloproteinases 2 and 9. Cancer Res 69:879–886

    PubMed  CAS  Google Scholar 

  • Sorensen MD, Blaehr LK, Christensen MK, Hoyer T, Latini S, Hjarnaa PJ, Bjorkling F (2003) Cyclic phosphinamides and phosphonamides, novel series of potent matrix metalloproteinase inhibitors with antitumour activity. Bioorg Med Chem 11:5461–5484

    PubMed  CAS  Google Scholar 

  • Sorokin L (2010) The impact of the extracellular matrix on inflammation. Nat Rev Immunol 10:712–723

    PubMed  CAS  Google Scholar 

  • Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    PubMed  CAS  Google Scholar 

  • Stetler-Stevenson W (2008) The tumor microenvironment: regulation by MMP-independent effects of tissue inhibitor of metalloproteinases-2. Cancer Metastasis Rev 27:57–66

    PubMed  CAS  Google Scholar 

  • Stetler-Stevenson WG, Seo D-W (2005) TIMP-2: an endogenous inhibitor of angiogenesis. Trends Mol Med 11:97–103

    PubMed  CAS  Google Scholar 

  • Strongin AY (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem 270:5331–5338

    PubMed  CAS  Google Scholar 

  • Stuelten CH, Byfield SD, Arany PR, Karpova TS, Stetler-Stevenson WG, Roberts AB (2005) Breast cancer cells induce stromal fibroblasts to express MMP-9 via secretion of TNF-Î ± and TGF-β. J Cell Sci 118:2143–2153

    PubMed  CAS  Google Scholar 

  • Swarnakar S, Ganguly K, Kundu P, Banerjee A, Maity P, Sharma AV (2005) Curcumin regulates expression and activity of matrix metalloproteinases 9 and 2 during prevention and healing of indomethacin-induced gastric ulcer. J Biol Chem 280:9409–9415

    PubMed  CAS  Google Scholar 

  • Swarnakar S, Mishra A, Ganguly K, Sharma AV (2007) Matrix metalloproteinase-9 activity and expression is reduced by melatonin during prevention of ethanol-induced gastric ulcer in mice. J Pineal Res 43:56–64

    PubMed  CAS  Google Scholar 

  • Swarnakar S, Paul S, Singh LP, Reiter RJ (2011) Matrix metalloproteinases in health and disease: regulation by melatonin. J Pineal Res 50:8–20

    PubMed  CAS  Google Scholar 

  • Taub R (2004) Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol 5:836–847

    PubMed  CAS  Google Scholar 

  • Taylor PM, Woodfield RJ, Hodgkin MN, Pettitt TR, Martin A, Kerr DJ, Wakelam MJ (2002) Breast cancer cell-derived EMMPRIN stimulates fibroblast MMP2 release through a phospholipase A(2) and 5-lipoxygenase catalyzed pathway. Oncogene 21:5765–5772

    PubMed  CAS  Google Scholar 

  • Tochowicz A, Maskos K, Huber R, Oltenfreiter R, Dive V, Yiotakis A, Zanda M, Pourmotabbed T, Bode W, Goettig P (2007) Crystal structures of MMP-9 complexes with five inhibitors: contribution of the flexible Arg424 side-chain to selectivity. J Mol Biol 371:989–1006

    PubMed  CAS  Google Scholar 

  • Tuccinardi T, Nuti E, Ortore G, Rossello A, Avramova SI, Martinelli A (2008) Development of a receptor-based 3D-QSAR study for the analysis of MMP2, MMP3, and MMP9 inhibitors. Bioorg Med Chem 16:7749–7758

    PubMed  CAS  Google Scholar 

  • Tymms MJ (1999) Sorsby’s fundus dystrophy: what does TIMP3 tell us about general mechanisms underlying macular degeneration? Clin Exp Optom 82:124–129

    PubMed  Google Scholar 

  • Van den Steen PE, Proost P, Wuyts A, Van Damme J, Opdenakker G (2000) Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-Î ± and leaves RANTES and MCP-2 intact. Blood 96:2673–2681

    PubMed  Google Scholar 

  • Van den Steen PE, Van Aelst I, Hvidberg V, Piccard H, Fiten P, Jacobsen C, Moestrup SK, Fry S, Royle L, Wormald MR, Wallis R, Rudd PM, Dwek RA, Opdenakker G (2006) The hemopexin and O-glycosylated domains tune gelatinase B/MMP-9 bioavailability via inhibition and binding to cargo receptors. J Biol Chem 281:18626–18637

    PubMed  Google Scholar 

  • Van Wart HE, Birkedal-Hansen H (1990) The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA 87:5578–5582

    PubMed  Google Scholar 

  • Verstappen J, Von den Hoff JW (2006) Tissue inhibitors of metalloproteinases (TIMPs): their biological functions and involvement in oral disease. J Dental Res 85:1074–1084

    CAS  Google Scholar 

  • Vu TH (1998) MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93:411–422

    PubMed  CAS  Google Scholar 

  • Wang W, Schulze CJ, Suarez-Pinzon WL, Dyck JR, Sawicki G, Schulz R (2002) Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation 106:1543–1549

    PubMed  CAS  Google Scholar 

  • Whittaker M, Floyd CD, Brown P, Gearing AJ (1999) Design and therapeutic application of matrix metalloproteinase inhibitors. Chem Rev 99:2735–2776

    PubMed  CAS  Google Scholar 

  • Wilhelm SM, Collier IE, Marmer BL, Eisen AZ, Grant GA, Goldberg GI (1989) SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J Biol Chem 264:17213–17221

    PubMed  CAS  Google Scholar 

  • Willard HF, Durfy SJ, Mahtani MM, Dorkins H, Davies KE, Williams BR (1989) Regional localization of the TIMP gene on the human X chromosome. Extension of a conserved synteny and linkage group on proximal Xp. Hum Genet 81:234–238

    PubMed  CAS  Google Scholar 

  • Williamson RA, Martorell G, Carr MD, Murphy G, Docherty AJ, Freedman RB, Feeney J (1994) Solution structure of the active domain of tissue inhibitor of metalloproteinases-2. A new member of the OB fold protein family. Biochemistry 33:11745–11759

    PubMed  CAS  Google Scholar 

  • Wingfield PT, Sax JK, Stahl SJ, Kaufman J, Palmer I, Chung V, Corcoran ML, Kleiner DE, Stetler-Stevenson WG (1999) Biophysical and functional characterization of full-length, recombinant human tissue inhibitor of metalloproteinases-2 (TIMP-2) produced in Escherichia coli. J Biol Chem 274:21362–21368

    PubMed  CAS  Google Scholar 

  • Woolley DE, Roberts DR, Evanson JM (1975) Inhibition of human collagenase activity by a small molecular weight serum protein. Biochem Biophys Res Commun 66:747–754

    PubMed  CAS  Google Scholar 

  • Wucherpfennig AL, Li Y-P, Stetler-Stevenson WG, Rosenberg AE, Stashenko P (1994) Expression of 92 kD type IV collagenase/gelatinase B in human osteoclasts. J Bone Mineral Res 9:549–556

    CAS  Google Scholar 

  • Wurtz SO, Christensen IJ, Schrohl AS, Mouridsen H, Lademann U, Jensen V, Brunner N (2005) Measurement of the uncomplexed fraction of tissue inhibitor of metalloproteinases-1 in the prognostic evaluation of primary breast cancer patients. Mol Cell Proteomics 4:483–491

    PubMed  Google Scholar 

  • Xia T, Akers K, Eisen AZ, Seltzer JL (1996) Comparison of cleavage site specificity of gelatinases A and B using collagenous peptides. Biochim Biophys Acta 1293:259–266

    PubMed  Google Scholar 

  • Xie B, Laouar A, Huberman E (1998) Autocrine regulation of macrophage differentiation and 92-kDa gelatinase production by tumor necrosis factor-alpha via alpha5 beta1 integrin in HL-60 cells. J Biol Chem 273:11583–11588

    PubMed  CAS  Google Scholar 

  • Xue M, Jackson CJ (2008) Autocrine actions of matrix metalloproteinase (MMP)-2 counter the effects of MMP-9 to promote survival and prevent terminal differentiation of cultured human keratinocytes. J Invest Dermatol 128:2676–2685

    PubMed  CAS  Google Scholar 

  • Yan L, Borregaard N, Kjeldsen L, Moses MA (2001) The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). J Biol Chem 276:37258–37265

    PubMed  CAS  Google Scholar 

  • Yeow KM, Kishnani NS, Hutton M, Hawkes SP, Murphy G, Edwards DR (2002) Sorsby’s fundus dystrophy tissue inhibitor of metalloproteinases-3 (TIMP-3) mutants have unimpaired matrix metalloproteinase inhibitory activities, but affect cell adhesion to the extracellular matrix. Matrix Biol 21:75–88

    PubMed  CAS  Google Scholar 

  • Young DA, Phillips BW, Lundy C, Nuttall RK, Hogan A, Schultz GA, Leco KJ, Clark IM, Edwards DR (2002) Identification of an initiator-like element essential for the expression of the tissue inhibitor of metalloproteinases-4 (Timp-4) gene. Biochem J 364:89–99

    PubMed  CAS  Google Scholar 

  • Zeigler ME, Dutcheshen NT, Gibbs DF, Varani J (1996) Growth factor-induced epidermal invasion of the dermis in human skin organ culture: expression and role of matrix metalloproteinases. Invasion Metastasis 16:11–18

    PubMed  CAS  Google Scholar 

  • Zhang HJ, Zhao W, Venkataraman S, Robbins MEC, Buettner GR, Kregel KC, Oberley LW (2002) Activation of matrix metalloproteinase-2 by overexpression of manganese superoxide dismutase in human breast cancer MCF-7 cells involves reactive oxygen species. J Biol Chem 277:20919–20926

    PubMed  CAS  Google Scholar 

  • Zhang L, Zhao L, Zhao D, Lin G, Guo B, Li Y, Liang Z, Zhao XJ, Fang X (2009) Inhibition of tumor growth and induction of apoptosis in prostate cancer cell lines by overexpression of tissue inhibitor of matrix metalloproteinase-3. Cancer Gene Ther 17:171–179

    PubMed  Google Scholar 

  • Zucker S (1998) Tissue inhibitor of metalloproteinase-2 (TIMP-2) binds to the catalytic domain of the cell surface receptor, membrane type 1-matrix metalloproteinase 1 (MT1-MMP). J Biol Chem 273:1216–1222

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Work is supported by grants NBA2007 of DBT and CLP261 of NTRF, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehasikta Swarnakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Swarnakar, S., Mishra, A., Chaudhuri (Guha), S.R. (2012). The Gelatinases and Their Inhibitors: The Structure–Activity Relationships. In: Gupta, S. (eds) Matrix Metalloproteinase Inhibitors. Experientia Supplementum, vol 103. Springer, Basel. https://doi.org/10.1007/978-3-0348-0364-9_3

Download citation

Publish with us

Policies and ethics