Skip to main content

Recombinant Human G-CSF Enhances Recovery and Improves Survival from Severe Radiation-Induced Myelosuppression

  • Chapter
  • First Online:
Twenty Years of G-CSF

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

It is well known that recombinant human granulocyte colony-stimulating factor (rHuG-CSF) is approved by the United States Food and Drug Administration (FDA) to treat chemotherapy-induced neutropenia. The FDA relied on the large literature database of nonclinical and clinical studies, as well as successful clinical trials to support approval of rHuG-CSF for this condition. rHuG-CSF also has utility for another indication: radiation-induced myelosuppression and treatment of potentially lethally irradiated personnel. rHuG-CSF showed significant efficacy in ameliorating the radiation-induced effects of myelosuppression. It enhanced survival from lethal radiation exposure within the hematopoietic subsyndrome (H) of the acute radiation syndrome (H-ARS) in all animal models evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schuening FG, Storb R, Goehle S et al (1989) Effect of recombinant human granulocyte colony-stimulating factor on hematopoiesis of normal dogs and on hematopoietic recovery after otherwise lethal total body irradiation. Blood 74:1308–1313

    PubMed  CAS  Google Scholar 

  2. Patchen ML, MacVittie TJ, Solberg BD, Souza LM (1990) Therapeutic administration of recombinant human granulocyte colony stimulating factor accelerated hemopoietic regeneration and enhances survival in a murine model of radiation-induced myelosuppression. Int J Cell Cloning 8:107–122

    Article  PubMed  CAS  Google Scholar 

  3. MacVittie TJ, Monroy RL, Patchen ML, Souza LM (1990) Therapeutic use of recombinant human G-CSF in a canine model of sublethal and lethal whole-body irradiation. Int J Radiat Biol 57:723–736

    Article  PubMed  CAS  Google Scholar 

  4. Patchen ML, Fischer R, MacVittie TJ (1993) Effects of combined administration of IL-6 and G-CSF on recovery from radiation-induced hemopoietic aplasia. Exp Hematol 21:338–344

    PubMed  CAS  Google Scholar 

  5. Schuening FG, Appelbaum FR, Deeg HJ et al (1993) Effects of recombinant canine stem cell factor, a c-kit ligand and recombinant granulocyte colony stimulating factor on hematopoietic recovery after otherwise lethal total body irradiation. Blood 81:20–26

    PubMed  CAS  Google Scholar 

  6. Tanikawa S, Nakao I, Tsuneska K, Nobio N (1989) Effects of recombinant granuloctye colony-stimulating factor (rG- CSF) and recombinant granuloctye-macrophage colony-stimulating factor (rGM-CSF) on acute radiation hematopoietic injury in mice. Exp Hematol 17:883–888

    PubMed  CAS  Google Scholar 

  7. Tanikawa S, Nose M, Yoshiro A, Tsuneoka K, Shikita M, Nara N (1990) Effects of recombinant human granuloctye colony-stimulating factor on the hematologic recovery and survival of irradiated mice. Blood 76:445–449

    PubMed  CAS  Google Scholar 

  8. Farese AM, Hunt P, Grab LB, MacVittie TJ (1996) Combined administration of recombinant human megakaryocyte growth and development factor and granulocyte colony-stimulating factor enhances multilineage hematopoietic reconstitution in nonhuman primates after radiation-induced marrow aplasia. J Clin Invest 97:2145–2151

    Article  PubMed  CAS  Google Scholar 

  9. MacVittie TJ, Farese AM, Herodin F, Grab LB, Baum CM, McKearn JP (1996) Combination therapy of radiation-induced bone marrow aplasia in nonhuman primates using synthokine SC-55494 and recombinant human granulocyte colony-stimulating factor. Blood 87:4129–4135

    PubMed  CAS  Google Scholar 

  10. MacVittie TJ, Farese AM, Jackson WI (2005) Defining the full therapeutic potential of recombinant growth factors in the post radiation-accident environment: the effect of supportive care plus administration of G-CSF. Health Phys 89:546–555

    Article  PubMed  CAS  Google Scholar 

  11. Mackey M, Aprikyan AAG, Dale DC (2003) The rate of apoptosis in post mitotic neutrophil precursors of normal and neutropenic humans. Cell Prolif 36:27–34

    Article  PubMed  CAS  Google Scholar 

  12. Lord BI, Woolford LB, Molineux G (2001) Kinetics of neutrophil production in normal and neutropenic animals during the response to filgrastim (r-metHu G-CSF) or filgrastim SD/01 (peg-r-metHu G-CSF). Clin Cancer Res 7:2085–2090

    PubMed  CAS  Google Scholar 

  13. Lord BI, Bronchud MH, Owens S et al (1989) The kinetics of human granulopoiesis following treatment with granulocyte colony-stimulating factor in vivo. Proc Natl Acad Sci U S A 86:9499–9503

    Article  PubMed  CAS  Google Scholar 

  14. Rieger MA, Hoppe PS, Smejkal BM, Eitelhuber AC, Schroeder T (2009) Hematopoietic cytokines can instruct lineage choice. Science 325:217–218

    Article  PubMed  CAS  Google Scholar 

  15. Dainiak N (1997) Biological effects of radiation injury. 12(Suppl 2), iii–iv. In: Dainiak N, Schull WJ, Karkanitsa L, Aleinikova OA (eds) Radiation injury and the Chernobyl catastrophe. Miamisburg, OH, AlphaMed Press, 3-22-1996

    Google Scholar 

  16. Ricks RC, Fry SA (1990) The medical basis for radiation accident preparedness II: clinical experience and follow-up since, 1979. Elsevier Science, New York, NY

    Google Scholar 

  17. Browne D, Weiss JF, MacVittie TJ, Pillai MV (1990) Treatment of radiation injuries. Proceedings of the first consensus development conference on the treatment of radiation injuries, Plenum Press, New York

    Google Scholar 

  18. MacVittie TJ, Weiss JF, Browne D (1996) Advances in the treatment of radiation injuries. Proceedings of second consensus development conference on the treatment of radiation injuries, Pergamon, Elsevier Science Inc, Terrytown, NY

    Google Scholar 

  19. Ricks RC, Berger ME, O’Hara F (2001) The medical basis for radiation accident preparedness IV: clinical care of victims. Parthenon Publishers, Washington, DC

    Google Scholar 

  20. Waselenko JK, MacVittie TJ, Blakely WF et al (2004) Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group. Ann Intern Med 140:1037–1051

    PubMed  Google Scholar 

  21. Crawford LM (2002) New drug and biological drug products; evidence needed to demonstrate effectiveness of new drugs when human efficacy studies are not ethical or feasible. Fed Regist 67:37988–37998. 5-31-2002. 21 CFR parts 314 and 601, FDA, HHS; ACTION: Final Rule

    Google Scholar 

  22. Food and Drug Administration, Center for Drug Evaluation and Research and Food and Drug Administration, Center for Biologics Evaluation and Research (2009) Guidance for industry: animal models-essential elements to address efficacy under the animal rule, 1–19, 1-13-2009

    Google Scholar 

  23. Anno GH, Young RW, Bloom RM, Mercier JR (2003) Dose response relationships for acute ionizing-radiation lethality. Health Phys 84:565–575

    Article  PubMed  CAS  Google Scholar 

  24. Anno GH, Baum SJ, Withers HR, Young RW (1989) Symptomatology of acute radiation effects in humans after exposure to doses of 0.5-30 Gy. Health Phys 56:821–838

    Article  PubMed  CAS  Google Scholar 

  25. Baranov AE, Guskova AK (1990) Acute radiation disease in Chernobyl accident victims. In: Ricks RC et al (eds) The medical basis for radiation accident preparedness II; clinical experience and follow-up since 1979. Elsevier, New York, pp 79–87

    Google Scholar 

  26. Bodey GP, Buckley M, Sathe YS, Freireich EJ (1966) Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia. Ann Intern Med 64:328–340

    PubMed  CAS  Google Scholar 

  27. Hughes WT, Armstrong D, Bodey GP et al (1990) Guidelines for the use of antimicrobial agents in neutropenic patients with unexplained fever. J Infect Dis 161:381–396

    Article  PubMed  CAS  Google Scholar 

  28. Hughes WT (2002) Use of antimicrobial agents for treatment of infection in the neutropenic immunocompromised patient. In: Ricks R et al (eds) The medical basis for radiation-accident preparedness. The clinical care of victims. The Parthenon Publishing Group, Washington, DC, pp 117–129

    Google Scholar 

  29. Gafter-Gvili A, Fraser A, Mical P, Leibovici L (2005) Meta-analysis: antibiotic prophylaxis reduces mortality in neutropenic patients. Ann Intern Med 142:979–995

    PubMed  Google Scholar 

  30. Schimpff SC (1990) Infections in radiation accidents. In: Browne D et al (eds) Treatment of radiation injuries. Plenum, New York, pp 75–85

    Google Scholar 

  31. Timmer-Bonte JN, de Boo TM, Smit HJ et al (2005) Prevention of chemotherapy-induced febrile neutropenia by prophylatic antibiotics plus or minus granulocyte colony-stimulating factor in small cell lung cancer: a Dutch randomized phase III study. J Clin Oncol 23:7974–7984

    Article  PubMed  CAS  Google Scholar 

  32. Pizzo PA (1984) Granulocytopenia and cancer therapy. Cancer 54:2649–2661

    Article  PubMed  CAS  Google Scholar 

  33. Pizzo PA (1993) Management of fever in patients with cancer and treatment-induced neutropenia. N Engl J Med 328:1323–1332

    Article  PubMed  CAS  Google Scholar 

  34. Hughes WT, Armstrong D, Bodey GP, Bow EJ, Brown AE, Calandra T (2002) 2002 guidelines for the use of antimicrobial agents in neutropenic patients with cancer. Clin Infect Dis 34:730–751

    Article  PubMed  Google Scholar 

  35. National Comprehensive Cancer Network (2005) Clinical practice guidelines in oncology: fever and neutropenia. Version 1.2005. 8-31-2005

    Google Scholar 

  36. Hughes WT, Armstrong D, Bodey GP et al (1997) 1997 Guidelines for the use of antimicrobial agents in neutropenic patients with unexplained fever. Clin Infect Dis 25:551–573

    Article  PubMed  CAS  Google Scholar 

  37. Baranov AE, Konchalovski MV, Soloviev WY, Guskova AK (1998) Use of blood cell count changes after radiation exposure in dose assessment and evaluation of bone marrow function. In: Ricks RC et al (eds) The medical basis for radiation accident preparedness II. Elsevier, New York, pp 427–443

    Google Scholar 

  38. Baranov AE (1996) Allogenic bone marrow transplantation after severe, uniform total-body irradiation: experience from recent (Nyasvizh, Belarus) and previous radiation accidents. In: MacVittie TJ et al (eds) Advances in the treatment of radiation injuries: advances in the bioscience, vol 94. Pergamon, Elsevier Science Ltd, Tarrytown, NY, pp 281–293

    Google Scholar 

  39. Fliedner TM et al (1988) Hematological indicators to predict patient recovery after whole-body irradiation as a basis for clinical management. In: Ricks RC (ed) The medical basis for radiation accident preparedness. Elsevier, New York, pp 445–459

    Google Scholar 

  40. Toda H, Murata A, Matsuura N et al (1993) Therapeutic efficacy of granulocyte colony-stimulating factor against rat cecal ligation and puncture model. Stem Cells 11:228–234

    Article  PubMed  CAS  Google Scholar 

  41. Weisbart RH, Gasson JC, Golde DW (1989) Colony-stimulating factors and neutrophils. Colony-stimulating factors and host defense. Ann Intern Med 110:297–303

    PubMed  CAS  Google Scholar 

  42. Cohen AM, Zsebo KM, Inoue H et al (1987) In vivo stimulation of granulopoiesis by recombinant human granulocyte colony-stimulating factor. Proc Natl Acad Sci USA 84:2484–2488

    Article  PubMed  CAS  Google Scholar 

  43. Matsumoto M, Matsubara S, Matsuno T et al (1987) Protective effect of human granulocyte colony-stimulating factor on microbial infection in neutropenic mice. Infect Immunol 55:2715–2720

    CAS  Google Scholar 

  44. Shinomiya N, Tsuru S, Katsura Y, Kayashima S, Nomoto K (1991) Enhanced resistance against Listeria monocytogenes achieved by pretreatment with granulocyte colony-stimulating factor. Infect Immunol 59:4740–4743

    CAS  Google Scholar 

  45. Wakiyama H, Tsuru S, Hata N et al (1993) Therapeutic effect of granulocyte colony-stimulating factor and cephem antibiotics against experimental infections in neutropenic mice induced by cyclophosphamide. Clin Exp Immunol 92:218–224

    Article  PubMed  CAS  Google Scholar 

  46. O’Reilly M, Silver GM, Greenhalgh DG, Gamelli RL, Davis JH, Hebert JC (1992) Treatment of intra-abdominal infection with granulocyte colony-stimulating factor. J Trauma 33:679–682

    Article  PubMed  Google Scholar 

  47. Matsumoto M, Matsubara S, Yokota T (1991) Effect of combination therapy with recombinant granulocyte colony-stimulating factor (rG-CSF) and antibiotics in neutropenic mice unresponsive to antibiotics alone. J Antimicrob Chemother 28:447–453

    Article  PubMed  CAS  Google Scholar 

  48. Ono M, Matsumoto M, Matsubara S, Tomioka S, Asano S (1988) Protective effect of human granulocyte colony-stimulating factor on bacterial and fungal infections in neutropenic mice. Behring Inst Mitt 83:216–221

    PubMed  CAS  Google Scholar 

  49. Lindemann A, Riedel D, Oster W et al (1988) Granulocyte/macrophage colony-stimulating factor induces interleukin-1 production by human polymorphonuclear neutrophils. J Immunol 140:837–839

    PubMed  CAS  Google Scholar 

  50. Lindemann A, Riedel D, Oster W, Ziegler-Heitbrock HW (1989) Granulocyte-macrophage colony-stimulating factor induces cytokine secretion by human polymorphonuclear leukocytes. J Clin Invest 83:1308–1312

    Article  PubMed  CAS  Google Scholar 

  51. Lloyd AR, Oppenheim JJ (1992) Poly’s lament: the neglected role of the polymorphonuclear neutrophil in the afferent limb of the immune response. Immunol Today 13:169–172

    Article  PubMed  CAS  Google Scholar 

  52. Fasano MB, Cousart S, Neal S, McCall CE (1991) Increased expression of the interleukin-1 receptor on blood neutrophils of human with the sepsis syndrome. J Clin Invest 88:1452–1459

    Article  PubMed  CAS  Google Scholar 

  53. McColl SR, Paquin R, Manard C, Beaulieu AD (1992) Human neutrophils produce high levels of the interleukin 1 receptor antagonist in response to granulocyte/macrophage colony-stimulating factor and tumor necrosis factor. J Exp Med 176:593–598

    Article  PubMed  CAS  Google Scholar 

  54. Porteu F, Nathan C (1990) Shedding of tumor necrosis factor receptors by activated human neutrophils. J Exp Med 172:599–607

    Article  PubMed  CAS  Google Scholar 

  55. Re F, Megozzi M, Muzio M, Dinarello CA, Mantovani A, Colotta F (1993) Expression of interleukin-1 receptor antagonist (IL-1ra) by human circulating polymorphonuclear cells. Eur J Immunol 23:570–573

    Article  PubMed  CAS  Google Scholar 

  56. Dinarello CA (2010) IL-1: discoveries, controversies and future directions. Eur J Immunol 40:606

    Article  Google Scholar 

  57. Dinarello CA, Wolff RL (1974) Human leukocytic pyrogen: purification and development of a radioimmunoassay. Proc Natl Acad Sci U S A 74:4624–4627

    Article  Google Scholar 

  58. Strieter RM, Kunkel SL, Bone RC (1993) Role of tumor necrosis factor-alpha in disease states and inflammation. Crit Care Med 21:S447–S463

    Article  PubMed  CAS  Google Scholar 

  59. Beutler B, Grau G (1993) Tumor necrosis factor in the pathogenesis of infectious diseases. Crit Care Med 21:S423–S435

    Article  PubMed  CAS  Google Scholar 

  60. Kobayashi Y, Okabe T, Urabe A, Suzukci N, Takaku F (1987) Human granulocyte colony stimulating factor produced by Escherichia coli shortens the period of granulocytopenia induced by irradiation in mice. Jpn J Cancer Res 78:763–768

    PubMed  CAS  Google Scholar 

  61. Fushiki M, Ono K, Sasai K et al (1990) Effect of recombinant human granulocyte colony stimulating factor on granulocytopenia in mice induced by irradiation. Int J Radiat Oncol Biol Phys 18:353–357

    Article  PubMed  CAS  Google Scholar 

  62. Farese AM, Roskos L, Cheung E, Stead RB, Yin SM, MacVittie TJ (1998) A single administration of r-metHuG-SD/01 (SD01) significantly improves neutrophil recovery following autologous bone marrow transplantation. Blood 92:112

    Google Scholar 

  63. MacVittie TJ, Monroy RL (1990) Rescue of lethally irradiated animals: therapeutic use of rhG-CSF and rhGM-CSF in preclinical models of radiation-induced marrow aplasia. In: Browne D et al (eds) Treatment of radiation injuries. Plenum, New York, pp 35–49

    Google Scholar 

  64. Patchen ML, MacVittie T (1994) Granulocyte colony-stimulating factor and amifostine (Ethyol) synergize to enhance hemopoietic reconstitution and increase survival in irradiated animals. Semin Oncol 21:26–32

    PubMed  CAS  Google Scholar 

  65. MacVittie TJ, Monroy R, Vigneulle RM, Zeman GH, Jackson WE (1991) The relative biological effectiveness of mixed fission-neutron:gamma radiation on the hematopoietic syndrome in the canine: effect of therapy on survival. Radiat Res 128:S29–S36

    Article  PubMed  CAS  Google Scholar 

  66. Nash RA, Schuening FG, Seidel K et al (1994) Effect of recombinant canine granulocyte-macrophage colony-stimulating factor of hematopoietic recovery after otherwise lethal total body irradiation. Blood 83:1963–1970

    PubMed  CAS  Google Scholar 

  67. Neelis KJ, Dubbelman YD, Qingliang L, Thomas GR, Eaton DL, Wagemaker G (1997) Simultaneous administration of TPO and G-CSF after cytoreductive treatment of rhesus monkeys prevents thrombocytopenia, accelerates platelet and red cell reconstitution, alleviates neutropenia, and promotes the recovery of immature bone marrow cells. Exp Hematol 25:1084–1093

    PubMed  CAS  Google Scholar 

  68. Neelis KJ, Hartong SCC, Egeland T, Thomas GR, Eaton DL, Wagemaker G (1997) The efficacy of single-dose administration of thrombopoietin with coadministration of either granulocyte/macrophage or granulocyte colony-stimulating factor in myelosuppressed rhesus monkeys. Blood 90:2565–2573

    PubMed  CAS  Google Scholar 

  69. Farese AM, Casey DB, Smith WG, Vigneulle RM, McKearn JP, MacVittie TJ (2001) Leridistim, a chimeric dual G-CSF and IL-3 receptor agonist, enhances multilineage hematopoietic recovery in nonhuman primate model of radiation-induced myelosuppression: effect of schedule, dose, and route of administration. Stem Cells 19:522–533

    Article  PubMed  CAS  Google Scholar 

  70. Farese AM, Kirschner KF, Patchen ML, Zsebo KM, MacVittie TJ (1993) The effect of recombinant canine stem cell factor and/or recombinant canine granulocyte colony stimulating factor on marrow aplasia recovery in lethally irradiated canines. Exp Hematol 21:1169

    Google Scholar 

  71. Meisenberg BR, Davis TA, Melaragno AJ, Stead R, Monroy RL (1992) A comparison of therapeutic schedules for administering granulocyte colony-stimulating factor to nonhuman primates after high-dose chemotherapy. Blood 79:2267–2272

    PubMed  CAS  Google Scholar 

  72. Barrett A (1984) Total body irradiation and LD 50 in man. In: Roerse JJ et al (eds) Response of different species to total body irradiation. Martinus Nijhoff Publishers, Dordrecht, The Netherlands, pp 205–208

    Chapter  Google Scholar 

  73. Barabanova AV (1995) Acute radiation syndrome with cutaneous syndrome. In: Lord BI et al (eds) Radiation toxicology: bone marrow and leukaemia. Taylor and Francis, Bristol, PA, p 217

    Google Scholar 

  74. Konchalovsky MV, Baranov AE, Kolganov AV (2005) Multiple organ involvement and failure: selected Russian radiation accident cases re-visited. BJR Suppl. 2005; 27:26–29

    Article  Google Scholar 

  75. Uozaki H, Fukayama M, Nakagawa K et al (2005) The pathology of multi-organ involvement: two autopsy cases from the Tokai-mura criticality accident. Br J Radiol 27:13–16

    Article  CAS  Google Scholar 

  76. Asano S (2005) Multi-organ involvement: lessons from the experience of one victim of the Tokai-mura criticality accident. Br J Radiol 27:9–12

    Article  CAS  Google Scholar 

  77. Densow D, Kindler H, Baranov AE, Tibken B, Hofer EP, Fliedner TM (1997) Criteria for the selection of radiation accident victims for stem cell transplantation. Stem Cells 15(suppl 2):287–297

    PubMed  Google Scholar 

  78. Georges G, Storb R (2001) Experimental and clinical experience with hematopoietic stem cell transplants. In: Ricks R et al (eds) The medical basis for radiation-accident preparedness. Parthenon Publishing Group, Boca Raton, pp 73–93

    Google Scholar 

  79. Georges GE, Storb RF (1997) Experimental and clinical experience with hematopoietic stem cell transplants. Stem Cells 15:73–94

    Article  Google Scholar 

  80. Fliedner TM, Kindler H, Densow D, Baranov AE, Guskova AK, Szepesi T (1996) The Moscow-Ulm radiation accident clinical history data base. In: MacVittie T et al (eds) Advances in the treatment of radiation injuries. Pergamon, New York, pp 271–279

    Google Scholar 

  81. Baranov AE, Selidovkin GD, Butturini A, Gale RP (1994) Hematopoietic recovery after 10-Gy acute total body radiation. Blood 83:596–599

    PubMed  CAS  Google Scholar 

  82. Smith TJ, Khatcheressian J, Lyman GH et al (2006) 2006 update of recommendations for the use of white blood cell growth factors: an evidence-based clinical practice guideline. J Clin Oncol 24:3187–3205

    Article  PubMed  CAS  Google Scholar 

  83. Aapro MS, Cameron DA, Pettengell R et al (2006) EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidents of chemotherapy-induced febrile neutropenia in adult patients with lymphomas and solid tumours. Eur J Cancer 42:2433–2453

    Article  PubMed  CAS  Google Scholar 

  84. United States Centers for Disease Control and Prevention (2005) Facts about Neupogen. Available at: http://emergency.cdc.gov/radiation/neupogenfacts.asp. Accessed 23 Nov 2010

  85. United States Department of Health and Human Services (2010) Radiation emergency medical management; Hematopoietic subsyndromes; Hematopoeitic countermeasures. http://www.remm.nlm.gov/cytokines.htm. Accessed 22 Nov 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. MacVittie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Farese, A.M., Cohen, M.V., MacVittie, T.J. (2012). Recombinant Human G-CSF Enhances Recovery and Improves Survival from Severe Radiation-Induced Myelosuppression. In: Molineux, G., Foote, M., Arvedson, T. (eds) Twenty Years of G-CSF. Milestones in Drug Therapy. Springer, Basel. https://doi.org/10.1007/978-3-0348-0218-5_19

Download citation

Publish with us

Policies and ethics