Skip to main content

Alphavirus Particle-Based Vaccine Vectors

  • Chapter
  • First Online:
Replicating Vaccines

Abstract

Most of the vaccines in use today are live attenuated, killed, or protein subunit vaccines. Although these vaccines have saved countless lives, there is still a need to develop safer and more efficacious ones. These improved new generation vaccines will enable us to protect more people from a greater number of different infectious disease threats. One such new vaccine technology is derived from the alphaviruses, which are single-strand, positive-sense RNA viruses in the family Togaviridae. By removing the genes that encode for the viral coat proteins, and replacing them with an antigen-encoding gene, these viruses become a replicon that can replicate its genome but cannot propagate new virus particles. The resources that the virus once expended to make new progeny are now diverted to making vaccine antigen within the host. As a result of this molecular alteration, the alphavirus particle-based vectors serve as an attractive technology for the development of new and improved vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griffin DE (2007) Alphaviruses. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, PA, pp 1023–1067

    Google Scholar 

  2. Strauss JH, Strauss EG (1994) The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58:491–562

    CAS  PubMed  Google Scholar 

  3. Kuhn RJ (2007) Togaviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, PA, pp 1001–1022

    Google Scholar 

  4. Jahrling PB, Scherer WF (1973) Growth curves and clearance rates of virulent and benign Venezuelan encephalitis viruses in hamsters. Infect Immun 8:456–462

    CAS  PubMed  Google Scholar 

  5. Scherer WF, Ellsworth CA, Ventura AK (1971) Studies of viral virulence. II. Growth and adsorption curves of virulent and attenuated strains of Venezuelan encephalitis virus in cultured cells. Am J Pathol 62:211–219

    CAS  PubMed  Google Scholar 

  6. Kinney RM, Chang GJ, Tsuchiya KR, Sneider JM, Roehrig JT, Woodward TM, Trent DW (1993) Attenuation of Venezuelan equine encephalitis virus strain TC-83 is encoded by the 5′-noncoding region and the E2 envelope glycoprotein. J Virol 67:1269–1277

    CAS  PubMed  Google Scholar 

  7. Bernard KA, Klimstra WB, Johnston RE (2000) Mutations in the E2 glycoprotein of Venezuelan equine encephalitis virus confer heparan sulfate interaction, low morbidity, and rapid clearance from blood of mice. Virology 276:93–103

    Article  CAS  PubMed  Google Scholar 

  8. Byrnes AP, Griffin DE (2000) Large-plaque mutants of Sindbis virus show reduced binding to heparan sulfate, heightened viremia, and slower clearance from the circulation. J Virol 74:644–651

    Article  CAS  PubMed  Google Scholar 

  9. Klimstra WB, Ryman KD, Johnston RE (1998) Adaptation of Sindbis virus to BHK cells selects for use of heparan sulfate as an attachment receptor. J Virol 72:7357–7366

    CAS  PubMed  Google Scholar 

  10. Kulasegaran-Shylini R, Thiviyanathan V, Gorenstein DG, Frolov I (2009) The 5′UTR-specific mutation in VEEV TC-83 genome has a strong effect on RNA replication and subgenomic RNA synthesis, but not on translation of the encoded proteins. Virology 387:211–221

    Article  CAS  PubMed  Google Scholar 

  11. Frolov I, Hoffman TA, Pragai BM, Dryga SA, Huang HV, Schlesinger S, Rice CM (1996) Alphavirus-based expression vectors: strategies and applications. Proc Natl Acad Sci USA 93:11371–11377

    Article  CAS  PubMed  Google Scholar 

  12. Agapov EV, Frolov I, Lindenbach BD, Pragai BM, Schlesinger S, Rice CM (1998) Noncytopathic Sindbis virus RNA vectors for heterologous gene expression. Proc Natl Acad Sci USA 95:12989–12994

    Article  CAS  PubMed  Google Scholar 

  13. Frolov I, Agapov E, Hoffman TA Jr, Pragai BM, Lippa M, Schlesinger S, Rice CM (1999) Selection of RNA replicons capable of persistent noncytopathic replication in mammalian cells. J Virol 73:3854–3865

    CAS  PubMed  Google Scholar 

  14. Perri S, Driver DA, Gardner JP, Sherrill S, Belli BA, Dubensky TW Jr, Polo JM (2000) Replicon vectors derived from Sindbis virus and Semliki forest virus that establish persistent replication in host cells. J Virol 74:9802–9807

    Article  CAS  PubMed  Google Scholar 

  15. Petrakova O, Volkova E, Gorchakov R, Paessler S, Kinney RM, Frolov I (2005) Noncytopathic replication of Venezuelan equine encephalitis virus and eastern equine encephalitis virus replicons in mammalian cells. J Virol 79:7597–7608

    Article  CAS  PubMed  Google Scholar 

  16. Atasheva S, Garmashova N, Frolov I, Frolova E (2008) Venezuelan equine encephalitis virus capsid protein inhibits nuclear import in mammalian but not in mosquito cells. J Virol 82:4028–4041

    Article  CAS  PubMed  Google Scholar 

  17. Aguilar PV, Leung LW, Wang E, Weaver SC, Basler CF (2008) A five-amino-acid deletion of the eastern equine encephalitis virus capsid protein attenuates replication in mammalian systems but not in mosquito cells. J Virol 82:6972–6983

    Article  CAS  PubMed  Google Scholar 

  18. Bredenbeek PJ, Frolov I, Rice CM, Schlesinger S (1993) Sindbis virus expression vectors: packaging of RNA replicons by using defective helper RNAs. J Virol 67:6439–6446

    CAS  PubMed  Google Scholar 

  19. Liljestrom P, Garoff H (1991) A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology (NY) 9:1356–1361

    Article  CAS  Google Scholar 

  20. Pushko P, Parker M, Ludwig GV, Davis NL, Johnston RE, Smith JF (1997) Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology 239:389–401

    Article  CAS  PubMed  Google Scholar 

  21. Gardner JP, Frolov I, Perri S, Ji Y, MacKichan ML, Zur Megede J, Chen M, Belli BA, Driver DA, Sherrill S et al (2000) Infection of human dendritic cells by a sindbis virus replicon vector is determined by a single amino acid substitution in the E2 glycoprotein. J Virol 74:11849–11857

    Article  CAS  PubMed  Google Scholar 

  22. MacDonald GH, Johnston RE (2000) Role of dendritic cell targeting in Venezuelan equine encephalitis virus pathogenesis. J Virol 74:914–922

    Article  CAS  PubMed  Google Scholar 

  23. Nishimoto KP, Laust AK, Wang K, Kamrud KI, Hubby B, Smith JF, Nelson EL (2007) Restricted and selective tropism of a Venezuelan equine encephalitis virus-derived replicon vector for human dendritic cells. Viral Immunol 20:88–104

    Article  CAS  PubMed  Google Scholar 

  24. Leitner WW, Hwang LN, deVeer MJ, Zhou A, Silverman RH, Williams BR, Dubensky TW, Ying H, Restifo NP (2003) Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways. Nat Med 9:33–39

    Article  CAS  PubMed  Google Scholar 

  25. Atkins GJ, Fleeton MN, Sheahan BJ (2008) Therapeutic and prophylactic applications of alphavirus vectors. Expert Rev Mol Med 10:e33

    Article  PubMed  Google Scholar 

  26. Rayner JO, Dryga SA, Kamrud KI (2002) Alphavirus vectors and vaccination. Rev Med Virol 12:279–296

    Article  CAS  PubMed  Google Scholar 

  27. Greer CE, Zhou F, Legg HS, Tang Z, Perri S, Sloan BA, Megede JZ, Uematsu Y, Vajdy M, Polo JM (2007) A chimeric alphavirus RNA replicon gene-based vaccine for human parainfluenza virus type 3 induces protective immunity against intranasal virus challenge. Vaccine 25:481–489

    Article  CAS  PubMed  Google Scholar 

  28. Mok H, Lee S, Utley TJ, Shepherd BE, Polosukhin VV, Collier ML, Davis NL, Johnston RE, Crowe JE Jr (2007) Venezuelan equine encephalitis virus replicon particles encoding respiratory syncytial virus surface glycoproteins induce protective mucosal responses in mice and cotton rats. J Virol 81:13710–13722

    Article  CAS  PubMed  Google Scholar 

  29. Thompson JM, Nicholson MG, Whitmore AC, Zamora M, West A, Iwasaki A, Staats HF, Johnston RE (2008) Nonmucosal alphavirus vaccination stimulates a mucosal inductive environment in the peripheral draining lymph node. J Immunol 181:574–585

    CAS  PubMed  Google Scholar 

  30. LoBue AD, Lindesmith L, Yount B, Harrington PR, Thompson JM, Johnston RE, Moe CL, Baric RS (2006) Multivalent norovirus vaccines induce strong mucosal and systemic blocking antibodies against multiple strains. Vaccine 24:5220–5234

    Article  CAS  PubMed  Google Scholar 

  31. Thompson JM, Whitmore AC, Konopka JL, Collier ML, Richmond EM, Davis NL, Staats HF, Johnston RE (2006) Mucosal and systemic adjuvant activity of alphavirus replicon particles. Proc Natl Acad Sci USA 103:3722–3727

    Article  CAS  PubMed  Google Scholar 

  32. Harrington PR, Yount B, Johnston RE, Davis N, Moe C, Baric RS (2002) Systemic, mucosal, and heterotypic immune induction in mice inoculated with Venezuelan equine encephalitis replicons expressing Norwalk virus-like particles. J Virol 76:730–742

    Article  CAS  PubMed  Google Scholar 

  33. Caley IJ, Betts MR, Irlbeck DM, Davis NL, Swanstrom R, Frelinger JA, Johnston RE (1997) Humoral, mucosal, and cellular immunity in response to a human immunodeficiency virus type 1 immunogen expressed by a Venezuelan equine encephalitis virus vaccine vector. J Virol 71:3031–3038

    CAS  PubMed  Google Scholar 

  34. Hidmark AS, Nordstrom EK, Dosenovic P, Forsell MN, Liljestrom P, Karlsson Hedestam GB (2006) Humoral` responses against coimmunized protein antigen but not against alphavirus-encoded antigens require alpha/beta interferon signaling. J Virol 80:7100–7110

    Article  CAS  PubMed  Google Scholar 

  35. Tesh RB, Gajdusek DC, Garruto RM, Cross JH, Rosen L (1975) The distribution and prevalence of group A arbovirus neutralizing antibodies among human populations in Southeast Asia and the Pacific islands. Am J Trop Med Hyg 24:664–675

    CAS  PubMed  Google Scholar 

  36. Fillis CA, Calisher CH (1979) Neutralizing antibody responses of humans and mice to vaccination with Venezuelan encephalitis (TC-83) virus. J Clin Microbiol 10:544–549

    CAS  PubMed  Google Scholar 

  37. Bernstein DI, Reap EA, Katen K, Watson A, Smith K, Norberg P, Olmsted RA, Hoeper A, Morris J, Negri S et al (2009) Randomized, double-blind, Phase 1 trial of an alphavirus replicon vaccine for cytomegalovirus in CMV seronegative adult volunteers. Vaccine 28:484–493

    Article  CAS  PubMed  Google Scholar 

  38. White LJ, Parsons MM, Whitmore AC, Williams BM, de Silva A, Johnston RE (2007) An immunogenic and protective alphavirus replicon particle-based dengue vaccine overcomes maternal antibody interference in weanling mice. J Virol 81:10329–10339

    Article  CAS  PubMed  Google Scholar 

  39. Morris-Downes MM, Phenix KV, Smyth J, Sheahan BJ, Lileqvist S, Mooney DA, Liljestrom P, Todd D, Atkins GJ (2001) Semliki Forest virus-based vaccines: persistence, distribution and pathological analysis in two animal systems. Vaccine 19:1978–1988

    Article  CAS  PubMed  Google Scholar 

  40. Lee JS, Groebner JL, Hadjipanayis AG, Negley DL, Schmaljohn AL, Welkos SL, Smith LA, Smith JF (2006) Multiagent vaccines vectored by Venezuelan equine encephalitis virus replicon elicits immune responses to Marburg virus and protection against anthrax and botulinum neurotoxin in mice. Vaccine 24:6886–6892

    Article  CAS  PubMed  Google Scholar 

  41. Davis NL, West A, Reap E, MacDonald G, Collier M, Dryga S, Maughan M, Connell M, Walker C, McGrath K et al (2002) Alphavirus replicon particles as candidate HIV vaccines. IUBMB Life 53:209–211

    Article  CAS  PubMed  Google Scholar 

  42. Weiss BG, Schlesinger S (1991) Recombination between Sindbis virus RNAs. J Virol 65:4017–4025

    CAS  PubMed  Google Scholar 

  43. Raju R, Subramaniam SV, Hajjou M (1995) Genesis of Sindbis virus by in vivo recombination of nonreplicative RNA precursors. J Virol 69:7391–7401

    CAS  PubMed  Google Scholar 

  44. Fayzulin R, Gorchakov R, Petrakova O, Volkova E, Frolov I (2005) Sindbis virus with a tricomponent genome. J Virol 79:637–643

    Article  CAS  PubMed  Google Scholar 

  45. Geigenmuller-Gnirke U, Weiss B, Wright R, Schlesinger S (1991) Complementation between Sindbis viral RNAs produces infectious particles with a bipartite genome. Proc Natl Acad Sci USA 88:3253–3257

    Article  CAS  PubMed  Google Scholar 

  46. Frolov I, Frolova E, Schlesinger S (1997) Sindbis virus replicons and Sindbis virus: assembly of chimeras and of particles deficient in virus RNA. J Virol 71:2819–2829

    CAS  PubMed  Google Scholar 

  47. Smerdou C, Liljestrom P (1999) Two-helper RNA system for production of recombinant Semliki forest virus particles. J Virol 73:1092–1098

    CAS  PubMed  Google Scholar 

  48. Berglund P, Sjoberg M, Garoff H, Atkins GJ, Sheahan BJ, Liljestrom P (1993) Semliki Forest virus expression system: production of conditionally infectious recombinant particles. Biotechnology (NY) 11:916–920

    Article  CAS  Google Scholar 

  49. Kamrud KI, Alterson K, Custer M, Dudek J, Goodman C, Owens G, Smith JF (2010) Development and characterization of promoterless helper RNAs for production of alphavirus replicon particles. J Gen Virol 91(7):1723–1727

    Article  CAS  PubMed  Google Scholar 

  50. Kamrud KI, Alterson KD, Andrews C, Copp LO, Lewis WC, Hubby B, Patel D, Rayner JO, Talarico T, Smith JF (2008) Analysis of Venezuelan equine encephalitis replicon particles packaged in different coats. PLoS ONE 3:e2709

    Article  PubMed  Google Scholar 

  51. Perri S, Greer CE, Thudium K, Doe B, Legg H, Liu H, Romero RE, Tang Z, Bin Q, Dubensky TW Jr et al (2003) An alphavirus replicon particle chimera derived from venezuelan equine encephalitis and sindbis viruses is a potent gene-based vaccine delivery vector. J Virol 77:10394–10403

    Article  CAS  PubMed  Google Scholar 

  52. Atasheva S, Wang E, Adams AP, Plante KS, Ni S, Taylor K, Miller ME, Frolov I, Weaver SC (2009) Chimeric alphavirus vaccine candidates protect mice from intranasal challenge with western equine encephalitis virus. Vaccine 27:4309–4319

    Article  CAS  PubMed  Google Scholar 

  53. Paessler S, Fayzulin RZ, Anishchenko M, Greene IP, Weaver SC, Frolov I (2003) Recombinant sindbis/Venezuelan equine encephalitis virus is highly attenuated and immunogenic. J Virol 77:9278–9286

    Article  CAS  PubMed  Google Scholar 

  54. Paessler S, Ni H, Petrakova O, Fayzulin RZ, Yun N, Anishchenko M, Weaver SC, Frolov I (2006) Replication and clearance of Venezuelan equine encephalitis virus from the brains of animals vaccinated with chimeric SIN/VEE viruses. J Virol 80:2784–2796

    Article  CAS  PubMed  Google Scholar 

  55. Wang E, Petrakova O, Adams AP, Aguilar PV, Kang W, Paessler S, Volk SM, Frolov I, Weaver SC (2007) Chimeric Sindbis/eastern equine encephalitis vaccine candidates are highly attenuated and immunogenic in mice. Vaccine 25:7573–7581

    Article  CAS  PubMed  Google Scholar 

  56. Wang E, Volkova E, Adams AP, Forrester N, Xiao SY, Frolov I, Weaver SC (2008) Chimeric alphavirus vaccine candidates for chikungunya. Vaccine 26:5030–5039

    Article  CAS  PubMed  Google Scholar 

  57. Garmashova N, Gorchakov R, Volkova E, Paessler S, Frolova E, Frolov I (2007) The Old World and New World alphaviruses use different virus-specific proteins for induction of transcriptional shutoff. J Virol 81:2472–2484

    Article  CAS  PubMed  Google Scholar 

  58. Polo JM, Belli BA, Driver DA, Frolov I, Sherrill S, Hariharan MJ, Townsend K, Perri S, Mento SJ, Jolly DJ et al (1999) Stable alphavirus packaging cell lines for Sindbis virus and Semliki Forest virus-derived vectors. Proc Natl Acad Sci USA 96:4598–4603

    Article  CAS  PubMed  Google Scholar 

  59. Hevey M, Negley D, Pushko P, Smith J, Schmaljohn A (1998) Marburg virus vaccines based upon alphavirus replicons protect guinea pigs and nonhuman primates. Virology 251:28–37

    Article  CAS  PubMed  Google Scholar 

  60. Mossman SP, Bex F, Berglund P, Arthos J, O'Neil SP, Riley D, Maul DH, Bruck C, Momin P, Burny A et al (1996) Protection against lethal simian immunodeficiency virus SIVsmmPBj14 disease by a recombinant Semliki forest virus gp160 vaccine and by a gp120 subunit vaccine. J Virol 70:1953–1960

    CAS  PubMed  Google Scholar 

  61. Davis NL, Caley IJ, Brown KW, Betts MR, Irlbeck DM, McGrath KM, Connell MJ, Montefiori DC, Frelinger JA, Swanstrom R et al (2000) Vaccination of macaques against pathogenic simian immunodeficiency virus with Venezuelan equine encephalitis virus replicon particles. J Virol 74:371–378

    Article  CAS  PubMed  Google Scholar 

  62. Pan CH, Greer CE, Hauer D, Legg HS, Lee EY, Bergen MJ, Lau B, Adams RJ, Polo JM, Griffin DE (2010) A chimeric alphavirus replicon particle vaccine expressing the hemagglutinin and fusion proteins protects juvenile and infant rhesus macaques from measles. J Virol 84:3798–3807

    Article  CAS  PubMed  Google Scholar 

  63. Bergen MJ, Pan CH, Greer CE, Legg HS, Polo JM, Griffin DE (2010) Comparison of the immune responses induced by chimeric alphavirus-vectored and formalin-inactivated alum-precipitated measles vaccines in mice. PLoS ONE 5:e10297

    Article  PubMed  Google Scholar 

  64. Bernstein DI, Reap EA, Katen K, Watson A, Smith K, Norberg P, Olmsted RA, Hoeper A, Morris J, Negri S et al (2010) Randomized, double-blind, Phase 1 trial of an alphavirus replicon vaccine for cytomegalovirus in CMV seronegative adult volunteers. Vaccine 28:484–493

    Article  Google Scholar 

Download references

Acknowledgments

We thank Susan Barnett and Christian Mandl for their assistance during the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter W. Mason .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel

About this chapter

Cite this chapter

Balsitis, S.J., Beard, C.W., Mason, P.W. (2011). Alphavirus Particle-Based Vaccine Vectors. In: Dormitzer, P., Mandl, C., Rappuoli, R. (eds) Replicating Vaccines. Birkhäuser Advances in Infectious Diseases. Springer, Basel. https://doi.org/10.1007/978-3-0346-0277-8_15

Download citation

Publish with us

Policies and ethics