Skip to main content

Does Innate Immunity Get Old?

  • Chapter
  • First Online:
Immunosenescence

Part of the book series: Birkhäuser Advances in Infectious Diseases ((BAID))

  • 753 Accesses

Abstract

Innate immune cells are the first to be triggered after infection and represent the first line of defense against pathogens. Molecular mechanisms underlying innate cell recognition and effector functions have been extensively investigated; however, less is known on how these features might be influenced by the aging process. In particular, although alterations in phenotype and functions of different innate cells have been found in aged donors, it is still unclear how aging globally affects innate signatures. It has been proposed that accumulation of a lifetime exposure to environmental factors may trigger an increased production of proinflammatory cytokines and other molecules leading to a chronic inflammatory state known as “inflamm-aging.” However, the exact mechanisms of “inflamm-aging” have not been yet characterized. In this chapter, we try to discuss the main alterations occurring during aging in innate cells, such as granulocytes, antigen-presenting cells (macrophages and dendritic cells) or Natural Killer cells and explain the “inflamm-aging” process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gordon S (2007) The macrophage: past, present and future. Eur J Immunol 37(Suppl 1):S9–17

    Article  PubMed  CAS  Google Scholar 

  2. Solana R, Pawelec G, Tarazona R (2006) Aging and innate immunity. Immunity 24:491–494

    Article  PubMed  CAS  Google Scholar 

  3. Kovacs EJ, Palmer JL, Fortin CF, Fulop T Jr, Goldstein DR, Linton PJ (2009) Aging and innate immunity in the mouse: impact of intrinsic and extrinsic factors. Trends Immunol 30:319–324

    Article  PubMed  CAS  Google Scholar 

  4. Panda A, Arjona A, Sapey E, Bai F, Fikrig E, Montgomery RR, Lord JM, Shaw AC (2009) Human innate immunosenescence: causes and consequences for immunity in old age. Trends Immunol 30:325–333

    Article  PubMed  CAS  Google Scholar 

  5. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann NY Acad Sci 908:244–254

    Article  PubMed  CAS  Google Scholar 

  6. Maggio M, Guralnik JM, Longo DL, Ferrucci L (2006) Interleukin-6 in aging and chronic disease: a magnificent pathway. J Gerontol A Biol Sci Med Sci 61:575–584

    Article  PubMed  Google Scholar 

  7. Schneider EL (1983) Infectious diseases in the elderly. Ann Intern Med 98:395–400

    PubMed  CAS  Google Scholar 

  8. Mathur SK, Schwantes EA, Jarjour NN, Busse WW (2008) Age-related changes in eosinophil function in human subjects. Chest 133:412–419

    Article  PubMed  Google Scholar 

  9. Schwarzenbach HR, Nakagawa T, Conroy MC, de Weck AL (1982) Skin reactivity, basophil degranulation and IgE levels in ageing. Clin Allergy 12:465–473

    Article  PubMed  CAS  Google Scholar 

  10. Nauseef WM (2007) How human neutrophils kill and degrade microbes: an integrated view. Immunol Rev 219:88–102

    Article  PubMed  CAS  Google Scholar 

  11. Newburger PE (2006) Disorders of neutrophil number and function. Hematol Am Soc Hematol Educ Prog 104–110

    Google Scholar 

  12. Murciano C, Yanez A, O’Connor JE, Gozalbo D, Gil ML (2008) Influence of aging on murine neutrophil and macrophage function against Candida albicans. FEMS Immunol Med Microbiol 53:214–221

    Article  PubMed  CAS  Google Scholar 

  13. Fortin CF, McDonald PP, Lesur O, Fulop T Jr (2008) Aging and neutrophils: there is still much to do. Rejuv Res 11:873–882

    Article  CAS  Google Scholar 

  14. Fortin CF, Lesur O, Fulop T Jr (2007) Effects of TREM-1 activation in human neutrophils: activation of signaling pathways, recruitment into lipid rafts and association with TLR4. Int Immunol 19:41–50

    Article  PubMed  CAS  Google Scholar 

  15. Fortin CF, Larbi A, Dupuis G, Lesur O, Fulop T Jr (2007) GM-CSF activates the Jak/STAT pathway to rescue polymorphonuclear neutrophils from spontaneous apoptosis in young but not elderly individuals. Biogerontology 8:173–187

    Article  PubMed  CAS  Google Scholar 

  16. Fortin CF, Larbi A, Lesur O, Douziech N, Fulop T Jr (2006) Impairment of SHP-1 down-regulation in the lipid rafts of human neutrophils under GM-CSF stimulation contributes to their age-related, altered functions. J Leukoc Biol 79:1061–1072

    Article  PubMed  CAS  Google Scholar 

  17. Fulop T, Larbi A, Douziech N, Fortin C, Guerard KP, Lesur O, Khalil A, Dupuis G (2004) Signal transduction and functional changes in neutrophils with aging. Aging Cell 3:217–226

    Article  PubMed  CAS  Google Scholar 

  18. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  PubMed  CAS  Google Scholar 

  19. Lung TL, Saurwein-Teissl M, Parson W, Schonitzer D, Grubeck-Loebenstein B (2000) Unimpaired dendritic cells can be derived from monocytes in old age and can mobilize residual function in senescent T cells. Vaccine 18:1606–1612

    Article  PubMed  CAS  Google Scholar 

  20. Uyemura K, Castle SC, Makinodan T (2002) The frail elderly: role of dendritic cells in the susceptibility of infection. Mech Ageing Dev 123:955–962

    Article  PubMed  CAS  Google Scholar 

  21. Tesar BM, Walker WE, Unternaehrer J, Joshi NS, Chandele A, Haynes L, Kaech S, Goldstein DR (2006) Murine [corrected] myeloid dendritic cell-dependent toll-like receptor immunity is preserved with aging. Aging Cell 5:473–486

    Article  PubMed  CAS  Google Scholar 

  22. Liu YJ (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306

    Article  PubMed  CAS  Google Scholar 

  23. Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A (2003) Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med 198:513–520

    Article  PubMed  CAS  Google Scholar 

  24. Stout-Delgado HW, Yang X, Walker WE, Tesar BM, Goldstein DR (2008) Aging impairs IFN regulatory factor 7 up-regulation in plasmacytoid dendritic cells during TLR9 activation. J Immunol 181:6747–6756

    PubMed  CAS  Google Scholar 

  25. Ngan RK, Yip TT, Cheng WW, Chan JK, Cho WC, Ma VW, Wan KK, Au SK, Law CK, Lau WH (2002) Circulating Epstein-Barr virus DNA in serum of patients with lymphoepithelioma-like carcinoma of the lung: a potential surrogate marker for monitoring disease. Clin Cancer Res 8:986–994

    PubMed  Google Scholar 

  26. Munz C (2010) Antigen processing via autophagy – not only for MHC class II presentation anymore? Curr Opin Immunol 22:89–93

    Article  PubMed  Google Scholar 

  27. Cuervo AM (2008) Autophagy and aging: keeping that old broom working. Trends Genet 24:604–612

    Article  PubMed  CAS  Google Scholar 

  28. Villanueva JL, Solana R, Alonso MC, Pena J (1990) Changes in the expression of HLA-class II antigens on peripheral blood monocytes from aged humans. Dis Markers 8:85–91

    PubMed  CAS  Google Scholar 

  29. Stout RD, Suttles J (2005) Immunosenescence and macrophage functional plasticity: dysregulation of macrophage function by age-associated microenvironmental changes. Immunol Rev 205:60–71

    Article  PubMed  CAS  Google Scholar 

  30. Boehmer ED, Goral J, Faunce DE, Kovacs EJ (2004) Age-dependent decrease in Toll-like receptor 4-mediated proinflammatory cytokine production and mitogen-activated protein kinase expression. J Leukoc Biol 75:342–349

    Article  PubMed  CAS  Google Scholar 

  31. Boehmer ED, Meehan MJ, Cutro BT, Kovacs EJ (2005) Aging negatively skews macrophage TLR2- and TLR4-mediated pro-inflammatory responses without affecting the IL-2-stimulated pathway. Mech Ageing Dev 126:1305–1313

    Article  PubMed  CAS  Google Scholar 

  32. Yoon P, Keylock KT, Hartman ME, Freund GG, Woods JA (2004) Macrophage hypo-responsiveness to interferon-gamma in aged mice is associated with impaired signaling through Jak-STAT. Mech Ageing Dev 125:137–143

    Article  PubMed  CAS  Google Scholar 

  33. Chelvarajan RL, Liu Y, Popa D, Getchell ML, Getchell TV, Stromberg AJ, Bondada S (2006) Molecular basis of age-associated cytokine dysregulation in LPS-stimulated macrophages. J Leukoc Biol 79:1314–1327

    Article  PubMed  CAS  Google Scholar 

  34. Chelvarajan RL, Collins SM, Van Willigen JM, Bondada S (2005) The unresponsiveness of aged mice to polysaccharide antigens is a result of a defect in macrophage function. J Leukoc Biol 77:503–512

    Article  PubMed  CAS  Google Scholar 

  35. van Duin D, Mohanty S, Thomas V, Ginter S, Montgomery RR, Fikrig E, Allore HG, Medzhitov R, Shaw AC (2007) Age-associated defect in human TLR-1/2 function. J Immunol 178:970–975

    PubMed  Google Scholar 

  36. van Duin D, Allore HG, Mohanty S, Ginter S, Newman FK, Belshe RB, Medzhitov R, Shaw AC (2007) Prevaccine determination of the expression of costimulatory B7 molecules in activated monocytes predicts influenza vaccine responses in young and older adults. J Infect Dis 195:1590–1597

    Article  PubMed  Google Scholar 

  37. Ershler WB, Keller ET (2000) Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu Rev Med 51:245–270

    Article  PubMed  CAS  Google Scholar 

  38. Gomez CR, Nomellini V, Baila H, Oshima K, Kovacs EJ (2009) Comparison of the effects of aging and IL-6 on the hepatic inflammatory response in two models of systemic injury: scald injury versus i.p. LPS administration. Shock 31:178–184

    Article  PubMed  CAS  Google Scholar 

  39. Gomez CR, Hirano S, Cutro BT, Birjandi S, Baila H, Nomellini V, Kovacs EJ (2007) Advanced age exacerbates the pulmonary inflammatory response after lipopolysaccharide exposure. Crit Care Med 35:246–251

    Article  PubMed  CAS  Google Scholar 

  40. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868

    Article  PubMed  CAS  Google Scholar 

  41. Lago R, Gomez R, Lago F, Gomez-Reino J, Gualillo O (2008) Leptin beyond body weight regulation – current concepts concerning its role in immune function and inflammation. Cell Immunol 252:139–145

    Article  PubMed  CAS  Google Scholar 

  42. Padgett DA, Loria RM (1998) Endocrine regulation of murine macrophage function: effects of dehydroepiandrosterone, androstenediol, and androstenetriol. J Neuroimmunol 84:61–68

    Article  PubMed  CAS  Google Scholar 

  43. Raulet DH (2004) Interplay of natural killer cells and their receptors with the adaptive immune response. Nat Immunol 5:996–1002

    Article  PubMed  CAS  Google Scholar 

  44. Cooper MA, Yang L, Carrero JA, Yokoyama WM (2009) Cytokine-induced memory-like natural killer cells. Proc Natl Acad Sci U S A 106(6):1915–1919. Epub 2009 Jan 30. PMID:19181844

    Google Scholar 

  45. O’Leary JG, Goodarzi M, Drayton DL, von Andrian UH (2006) T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat Immunol 7(5):507–516. PMID: 16617337

    Google Scholar 

  46. Sun JC, Beilke JN, Lanier LL (2009) Adaptive immune features of natural killer cells. Nature 457:557–561

    Article  PubMed  CAS  Google Scholar 

  47. Chiossone L, Chaix J, Fuseri N, Roth C, Vivier E, Walzer T (2009) Maturation of mouse NK cells is a 4-stage developmental program. Blood 113:5488–5496

    Article  PubMed  CAS  Google Scholar 

  48. Freud AG, Caligiuri MA (2006) Human natural killer cell development. Immunol Rev 214:56–72

    Article  PubMed  CAS  Google Scholar 

  49. Juelke K, Killig M, Luetke-Eversloh M, Parente E, Gruen J, Morandi B, Ferlazzo G, Thiel A, Schmitt-Knosalla I, Romagnani C (2010) CD62L expression identifies a unique subset of polyfunctional CD56dim NK cells. Blood 116(8):1299–1307

    Article  PubMed  CAS  Google Scholar 

  50. Yu J, Mao HC, Wei M, Hughes T, Zhang J, Park IK, Liu S, McClory S, Marcucci G, Trotta R et al (2010) CD94 surface density identifies a functional intermediary between the CD56bright and CD56dim human NK-cell subsets. Blood 115:274–281

    Article  PubMed  CAS  Google Scholar 

  51. Bjorkstrom NK, Riese P, Heuts F, Andersson S, Fauriat C, Ivarsson MA, Bjorklund AT, Flodstrom-Tullberg M, Michaelsson J, Rottenberg ME et al (2010) Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK cell differentiation uncoupled from NK cell education. Blood 116(19):3853–64

    Article  PubMed  Google Scholar 

  52. Lopez-Verges S, Milush JM, Pandey S, York VA, Arakawa-Hoyt J, Pircher H, Norris PJ, Nixon DF, Lanier LL (2010) CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK cell subset. Blood 116(19):3865–74

    Article  PubMed  CAS  Google Scholar 

  53. Caligiuri MA (2008) Human natural killer cells. Blood 112:461–469

    Article  PubMed  CAS  Google Scholar 

  54. Romagnani C, Juelke K, Falco M, Morandi B, D’Agostino A, Costa R, Ratto G, Forte G, Carrega P, Lui G et al (2007) CD56brightCD16- killer Ig-like receptor- NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation. J Immunol 178:4947–4955

    PubMed  CAS  Google Scholar 

  55. Juelke K, Killig M, Thiel A, Dong J, Romagnani C (2009) Education of hyporesponsive NK cells by cytokines. Eur J Immunol 39:2548–2555

    Article  PubMed  CAS  Google Scholar 

  56. Le Garff-Tavernier M, Beziat V, Decocq J, Siguret V, Gandjbakhch F, Pautas E, Debre P, Merle-Beral H, Vieillard V (2010) Human NK cells display major phenotypic and functional changes over the life span. Aging Cell 9:527–535

    Article  PubMed  Google Scholar 

  57. Borrego F, Alonso MC, Galiani MD, Carracedo J, Ramirez R, Ostos B, Pena J, Solana R (1999) NK phenotypic markers and IL2 response in NK cells from elderly people. Exp Gerontol 34:253–265

    Article  PubMed  CAS  Google Scholar 

  58. Facchini A, Mariani E, Mariani AR, Papa S, Vitale M, Manzoli FA (1987) Increased number of circulating Leu 11+ (CD 16) large granular lymphocytes and decreased NK activity during human ageing. Clin Exp Immunol 68:340–347

    PubMed  CAS  Google Scholar 

  59. Mariani E, Mariani AR, Meneghetti A, Tarozzi A, Cocco L, Facchini A (1998) Age-dependent decreases of NK cell phosphoinositide turnover during spontaneous but not Fc-mediated cytolytic activity. Int Immunol 10:981–989

    Article  PubMed  CAS  Google Scholar 

  60. Sansoni P, Cossarizza A, Brianti V, Fagnoni F, Snelli G, Monti D, Marcato A, Passeri G, Ortolani C, Forti E et al (1993) Lymphocyte subsets and natural killer cell activity in healthy old people and centenarians. Blood 82:2767–2773

    PubMed  CAS  Google Scholar 

  61. Vitale M, Zamai L, Neri LM, Galanzi A, Facchini A, Rana R, Cataldi A, Papa S (1992) The impairment of natural killer function in the healthy aged is due to a postbinding deficient mechanism. Cell Immunol 145:1–10

    Article  PubMed  CAS  Google Scholar 

  62. Mariani E, Meneghetti A, Neri S, Ravaglia G, Forti P, Cattini L, Facchini A (2002) Chemokine production by natural killer cells from nonagenarians. Eur J Immunol 32:1524–1529

    Article  PubMed  CAS  Google Scholar 

  63. McMahon CW, Zajac AJ, Jamieson AM, Corral L, Hammer GE, Ahmed R, Raulet DH (2002) Viral and bacterial infections induce expression of multiple NK cell receptors in responding CD8(+) T cells. J Immunol 169:1444–1452

    PubMed  CAS  Google Scholar 

  64. Anfossi N, Robbins SH, Ugolini S, Georgel P, Hoebe K, Bouneaud C, Ronet C, Kaser A, DiCioccio CB, Tomasello E et al (2004) Expansion and function of CD8+ T cells expressing Ly49 inhibitory receptors specific for MHC class I molecules. J Immunol 173:3773–3782

    PubMed  CAS  Google Scholar 

  65. Tarazona R, DelaRosa O, Alonso C, Ostos B, Espejo J, Pena J, Solana R (2000) Increased expression of NK cell markers on T lymphocytes in aging and chronic activation of the immune system reflects the accumulation of effector/senescent T cells. Mech Ageing Dev 121:77–88

    Article  PubMed  CAS  Google Scholar 

  66. Abedin S, Michel JJ, Lemster B, Vallejo AN (2005) Diversity of NKR expression in aging T cells and in T cells of the aged: the new frontier into the exploration of protective immunity in the elderly. Exp Gerontol 40:537–548

    Article  PubMed  CAS  Google Scholar 

  67. Goronzy JJ, Henel G, Sawai H, Singh K, Lee EB, Pryshchep S, Weyand CM (2005) Costimulatory pathways in rheumatoid synovitis and T-cell senescence. Ann NY Acad Sci 1062:182–194

    Article  PubMed  CAS  Google Scholar 

  68. Marti F, Xu CW, Selvakumar A, Brent R, Dupont B, King PD (1998) LCK-phosphorylated human killer cell-inhibitory receptors recruit and activate phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA 95:11810–11815

    Article  PubMed  CAS  Google Scholar 

  69. Ugolini S, Arpin C, Anfossi N, Walzer T, Cambiaggi A, Forster R, Lipp M, Toes RE, Melief CJ, Marvel J et al (2001) Involvement of inhibitory NKRs in the survival of a subset of memory-phenotype CD8+ T cells. Nat Immunol 2:430–435

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Romagnani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Romagnani, C. (2012). Does Innate Immunity Get Old?. In: Thiel, A. (eds) Immunosenescence. Birkhäuser Advances in Infectious Diseases. Springer, Basel. https://doi.org/10.1007/978-3-0346-0219-8_2

Download citation

Publish with us

Policies and ethics