Skip to main content

Exploration d’une douleur thoracique suspecte d’origine coronaire en 2013 (en dehors de l’urgence) : le scanner s’impose en 1re intention

  • Conference paper
Imagerie en coupes du cœur et des vaisseaux

Résumé

Depuis les premiers articles sur la possibilité d’obtenir des « coronarographies non invasives » avec la TDM à faisceaux d’électrons [1], l’angioscanner ou angioTDM cardiaque s’est démocratisé avec l’apparition des acquisitions hélicoïdales 3D pour devenir une méthode très précise dans le diagnostic de la maladie coronarienne (CAD), comparable à la coronarographie invasive conventionnelle [2]. En conséquence, la TDM a rapidement été adoptée pour l’évaluation clinique des patients symptomatiques présentant une suspicion de CAD. Actuellement, il existe des recommandations scientifiques sur l’utilisation appropriée, les performances et l’interprétation [3–5] de la TDM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Moshage WE, Achenbach S, Seese B, et al. (1995) Coronary artery stenoses: three-dimensional imaging with electrocardiographically triggered, contrast agent-enhanced, electron-beam CT. Radiology 196: 707–14

    PubMed  CAS  Google Scholar 

  2. Mowatt G, Cook JA, Hillis GS, et al. (2008) 64-Slice computed tomography angiography in the diagnosis and assessment of coronary artery disease: systematic review and meta-analysis. Heart 94: 1386–93

    Article  PubMed  CAS  Google Scholar 

  3. Taylor AJ, Cerqueira M, Hodgson JM, et al. (2010) ACCF/SCCT/ACR/AHA/ASE/ASNC/ NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol 56: 1864–94

    Article  PubMed  Google Scholar 

  4. Abbara S, Arbab-Zadeh A, Callister TQ, et al. (2009) SCCT guidelines for performance of coronary computed tomographic angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr 3: 190–204

    Article  PubMed  Google Scholar 

  5. Raff GL, Abidov A, Achenbach S, et al. (2009) SCCT guidelines for the interpretation and reporting of coronary computed tomographic angiography. J Cardiovasc Comput Tomogr 3: 122–36

    Article  PubMed  Google Scholar 

  6. Isgum I, Prokop M, Niemeijer M, et al. (2012) Automatic coronary calcium scoring in low-dose chest computed tomography. IEEE Trans Med Imaging. [Epub ahead of print]

    Google Scholar 

  7. Madaj P, Budoff MJ (2012) Risk stratification of non-contrast CT beyond the coronary calcium scan. J Cardiovasc Comput Tomogr. [Epub ahead of print]

    Google Scholar 

  8. Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of non-invasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46: 552–7

    Article  PubMed  Google Scholar 

  9. Mollet NR, Cademartiri F, van Mieghem CA, et al. (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112: 2318–23

    Article  PubMed  Google Scholar 

  10. Gueret P, Laissy JP, Bonnello L, et al. (2013) Diagnostic Performance of Computed Tomography Coronary Angiography — Results from the Prospective National Multicenter Multi-vendor EVASCAN Study. Am J Cardiol (In press)

    Google Scholar 

  11. Nazeri I, Shahabi P, Tehrai M, et al. (2009) Assessment of patients after coronary artery bypass grafting using 64-slice computed tomography. Am J Cardiol 103: 667–73

    Article  PubMed  Google Scholar 

  12. Yang WJ, Zhang H, Xiao H, et al. (2012) High-definition computed tomography for coronary artery stents imaging compared with standard-definition 64-row multidectector computed tomography: an initial in vivo study. J Comput Assist Tomogr 36: 295–300

    Article  PubMed  Google Scholar 

  13. Dey D, Callister T, Slomka P, et al. (2006) Computer-aided detection and evaluation of lipid-rich plaque on noncontrast cardiac CT. Am J Roentgenol 186:407–13

    Article  Google Scholar 

  14. Ferencik M, Nieman K, Achenbach S (2006) Noncalcified and calcified coronary plaque detection by contrast-enhanced multi-detector computed tomography: a study of interobserver agreement. J Am Coll Cardiol 47: 207–9

    Article  PubMed  Google Scholar 

  15. Leber AW, Becker A, Knez A, et al. (2006) Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J Am Coll Cardiol 47: 672–7

    Article  PubMed  Google Scholar 

  16. Carrigan TP, Nair D, Schoenhagen P, et al. (2009) Prognostic utility of 64-slice computed tomography in patients with suspected but no documented coronary artery disease. Eur Heart J 30: 362–71

    Article  PubMed  Google Scholar 

  17. Gopal A, Nasir K, Ahmadi N, et al. (2009) Cardiac computed tomographic angiography in an outpatient setting: an analysis of clinical outcomes over a 40-month period. J Cardiovasc Comput Tomogr 3: 90–5

    Article  PubMed  Google Scholar 

  18. Ostrom MP, Gopal A, Ahmadi N, et al. (2008) Mortality incidence and the severity of coronary atherosclerosis assessed by computed tomography angiography. J Am Coll Cardiol 52: 1335–43

    Article  PubMed  Google Scholar 

  19. Shaw LJ, Berman DS, Hendel RC, et al. (2008) Prognosis by coronary computed tomographic angiography: matched comparison with myocardial perfusion single-photon emission computed tomography. J Cardiovasc Comput Tomogr 2: 93–101

    Article  PubMed  Google Scholar 

  20. Aldrovandi A, Maffei E, Palumbo A, et al. (2009) Prognostic value of computed tomography coronary angiography in patients with suspected coronary artery disease: a 24-month follow-up study. Eur Radiol 19: 1653–60

    Article  PubMed  Google Scholar 

  21. Hay CS, Morse RJ, Morgan-Hughes GJ, et al. (2010) Prognostic value of coronary multidetector CT angiography in patients with an intermediate probability of significant coronary heart disease. Br J Radiol 83: 327–30

    Article  PubMed  CAS  Google Scholar 

  22. Hulten EA, Carbonaro S, Petrillo SP, et al. (2011) Prognostic value of cardiac computed tomography angiography: a systematic review and meta-analysis. J Am Coll Cardiol 57: 1237–47

    Article  PubMed  Google Scholar 

  23. Mark DB, Berman DS, Budoff MJ, et al. (2010) ACCF/ACR/AHA/NASCI/SAIP/ SCAI/SCCT 2010 expert consensus document on coronary computed tomographic angiography: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol 55: 2663–99

    Article  PubMed  Google Scholar 

  24. Mark DB, Kong DF (2010) Cardiac computed tomographic angiography what’s the prognosis? J Am Coll Cardiol 55: 1029–31

    Article  PubMed  Google Scholar 

  25. Schepis T, Gaemperli O, Koepfli P, et al. (2007) Added value of coronary artery calcium score as an adjunct to gated SPECT for the evaluation of coronary artery disease in an intermediate-risk population. J Nucl Med 48: 1424–30

    Article  PubMed  Google Scholar 

  26. Chang SM, Nabi F, Xu J, et al. (2009) The coronary artery calcium score and stress myocardial perfusion imaging provide independent and complementary prediction of cardiac risk. J Am Coll Cardiol 54: 1872–82

    Article  PubMed  Google Scholar 

  27. Blankstein R, Dorbala S (2010) Adding calcium scoring to myocardial perfusion imaging: Does it alter physicians’ therapeutic decision making? J Nucl Cardiol 17: 168–71

    Article  PubMed  Google Scholar 

  28. Raggi P, Callister TQ, Shaw LJ (2004) Progression of coronary artery calcium and risk of first myocardial infarction in patients receiving cholesterol-lowering therapy. Arterioscler Thromb Vasc Biol 24: 1272–7

    Article  PubMed  CAS  Google Scholar 

  29. Min JK, Shaw LJ, Devereux RB, et al. (2007) Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality. J Am Coll Cardiol 50: 1161–70

    Article  PubMed  Google Scholar 

  30. Chow BJ, Wells GA, Chen L, et al. (2010) Prognostic value of 64-slice cardiac computed tomography severity of coronary artery disease, coronary atherosclerosis, and left ventricular ejection fraction. J Am Coll Cardiol 55: 1017–28

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-P. Laissy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Paris

About this paper

Cite this paper

Laissy, JP., Storey, J., Goupil, J., Moshinaly, F., Lasalarie, JC. (2013). Exploration d’une douleur thoracique suspecte d’origine coronaire en 2013 (en dehors de l’urgence) : le scanner s’impose en 1re intention. In: Boyer, L., Guéret, P. (eds) Imagerie en coupes du cœur et des vaisseaux. Springer, Paris. https://doi.org/10.1007/978-2-8178-0435-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0435-4_7

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0434-7

  • Online ISBN: 978-2-8178-0435-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics