Skip to main content

Prédisposition génétique et sepsis

  • Chapter
Infectiologie en réanimation

Part of the book series: Références en réanimation. Collection de la SRLF ((SRLF))

  • 1006 Accesses

Résumé

Les maladies infectieuses représentent la première cause de mortalité dans le monde. Malgré les importants progrès réalisés dans la prise en charge des infections les plus graves, comme le sepsis sévère et le choc septique, le pronostic reste sombre, avec une mortalité avoisinant 40–50 % chez les patients hospitalisés en réanimation pour état de choc septique. Cette constatation a permis de penser qu’outre les facteurs d’immunosuppression acquis (déficit immunitaire postinfectieux, infection par le virus de l’immunodéficience humaine, splénectomie, aplasie), des facteurs génétiques existent et peuvent prédisposer l’individu à certaines pathologies infectieuses ou é des présentations inhabituellement graves d’infections « banales ». De plus, l’existence de récurrences familiales a été un argument supplémentaire pour suspecter la présence de variants génétiques pouvant expliquer les différences phénotypiques cliniques et biologiques observées quotidiennement. La suspicion d’un « facteur génétique » pouvant influencer le risque de développer une maladie infectieuse n’est pas un sujet « moderne ». En effet, dès 1933, Webster rapportait dans le Journal of Experimental Medicine la sélection de lignées de souris susceptibles ou résistantes à l’infection par Bacillus enteritidis, soulignant le rôle du fond génétique murin dans la réponse à l’agression microbienne [1, 2]. Il a cependant fallu attendre plusieurs dizaines d’années avant de pouvoir identifier des variants génétiques responsables de ces phénotypes infectieux « extrêmes » chez l’Homme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Webster LT (1933) Inherited and acquired factors in resistance to infection: Ii. A comparison of mice inherently resistant or susceptible to bacillus enteritidis infection with respect to fertility, weight, and susceptibility to various routes and types of infection. J Exp Med 57(5): 819–43

    Article  PubMed  CAS  Google Scholar 

  2. Webster LT (1933) Inherited and acquired factors in resistance to infection: I. development of resistant and susceptible lines of mice through selective breeding. J Exp Med 57(5): 793–817

    Article  PubMed  CAS  Google Scholar 

  3. Lander ES, Linton LM, Birren B, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409(6822): 860–921

    Article  PubMed  CAS  Google Scholar 

  4. Manolio TA (?) Genomewide association studies and assessment of the risk of disease. N Engl J Med 363(2): 166–76

    Google Scholar 

  5. Gingles NA, Alexander JE, Kadioglu A, et al. (2001) Role of genetic resistance in invasive pneumococcal infection: identification and study of susceptibility and resistance in inbred mouse strains. Infect Immun 69(1): 426–34

    Article  PubMed  CAS  Google Scholar 

  6. Arredouani M, Yang Z, Ning Y, et al. (2004) The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles. J Exp Med 200(2): 267–72

    Article  PubMed  CAS  Google Scholar 

  7. Lanoue A, Clatworthy MR, Smith P, et al. (2004) SIGN-R1 contributes to protection against lethal pneumococcal infection in mice. J Exp Med 200(11): 1383–93

    Article  PubMed  CAS  Google Scholar 

  8. Alcais A, Abel L, Casanova JL (2009) Human genetics of infectious diseases: between proof of principle and paradigm. J Clin Invest 119(9): 2506–14

    Article  PubMed  CAS  Google Scholar 

  9. Sorensen TI, Nielsen GG, Andersen PK, Teasdale TW (1988) Genetic and environmental influences on premature death in adult adoptees. N Engl J Med 318(12): 727–32

    Article  PubMed  CAS  Google Scholar 

  10. Alcais A, Quintana-Murci L, Thaler DS, et al. (?) Life-threatening infectious diseases of childhood: single-gene inborn errors of immunity? Ann N YAcad Sci 1214: 18–33

    Google Scholar 

  11. Netea MG, van der Meer JW (?) Immunodeficiency and genetic defects of pattern-recognition receptors. N Engl J Med 364(1): 60–70

    Google Scholar 

  12. Gorbea C, Makar KA, Pauschinger M, et al. (2010) A role for Toll-like receptor 3 variants in host susceptibility to enteroviral myocarditis and dilated cardiomyopathy. J Biol Chem 285(30): 23208–223

    Article  PubMed  CAS  Google Scholar 

  13. Kindberg E, Vene S, Mickiene A, et al. (2011) A functional Toll-like receptor 3 gene (TLR3) may be a risk factor for tick-borne encephalitis virus (TBEV) infection. J Infect Dis 203(4): 523–8

    Article  PubMed  CAS  Google Scholar 

  14. Sironi M, Biasin M, Cagliani R, et al. (2012) A common polymorphism in TLR3 confers natural resistance to HIV-1 infection. J Immunol 188(2): 818–23

    Article  PubMed  CAS  Google Scholar 

  15. Lorenz E, Mira JP, Frees KL, Schwartz DA (2002) Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med 162(9): 1028–32

    Article  PubMed  CAS  Google Scholar 

  16. Bochud PY, Chien JW, Marr KA, et al. (2008) Toll-like receptor 4 polymorphisms and aspergillosis in stem-cell transplantation. N Engl J Med 359(17): 1766–77

    Article  PubMed  CAS  Google Scholar 

  17. Toubiana J, Courtine E, Pêne F, et al. (2010) IRAKI functional genetic variant affects severity of septic shock. Critical Care Medicine 38(12): 2287–94

    Article  PubMed  CAS  Google Scholar 

  18. Li X, Ptacek TS, Brown EE, Edberg JC (2009) Fcgamma receptors: structure, function and role as genetic risk factors in SLE. Genes Immun 10(5): 380–9

    Article  PubMed  CAS  Google Scholar 

  19. Van der Pol WL, Huizinga TW, Vidarsson G, et al. (2001) Relevance of Fcgamma receptor and interleukin-10 polymorphisms for meningococcal disease. J Infect Dis 184(12): 1548–55

    Article  PubMed  CAS  Google Scholar 

  20. Domingo P, Muniz-Diaz E, Baraldes MA, et al. (2002) Associations between Fc gamma receptor ILA polymorphisms and the risk and prognosis of meningococcal disease. Am J Med 112(1): 19–25

    Article  PubMed  CAS  Google Scholar 

  21. Yee AM, Phan HM, Zuniga R, et al. (2000) Association between Fcgamma-RIIa-R131 allotype and bacteremic pneumococcal pneumonia. Clin Infect Dis 30(1): 25–8

    Article  PubMed  CAS  Google Scholar 

  22. Yuan FF, Marks K, Wong M, et al. (2008) Clinical relevance of TLR2, TLR4, CD14 and FcgammaRIIA gene polymorphisms in Streptococcus pneumoniae infection. Immunol Cell Biol 86(3): 268–70

    Article  PubMed  CAS  Google Scholar 

  23. Yuan FF, Wong M, Pererva N, et al. (2003) FcgammaRIIA polymorphisms in Streptococcus pneumoniae infection. Immunol Cell Biol 81(3): 192–5

    Article  PubMed  CAS  Google Scholar 

  24. Endeman H, Cornips MC, Grutters JC, et al. (2009) The Fcgamma receptor IIA-R/ R131 genotype is associated with severe sepsis in community-acquired pneumonia. Clin Vaccine Immunol 16(7): 1087–90

    Article  PubMed  CAS  Google Scholar 

  25. Moens L, Van Hoeyveld E, Verhaegen J, et al. (2006) Fcgamma-receptor IIA genotype and invasive pneumococcal infection. Clin Immunol 118(1): 20–3

    Article  PubMed  CAS  Google Scholar 

  26. Bougié A, Max A, Mongardon N, et al. (2012) Protective effects of FCGR2A polymorphism in invasive pneumococcal diseases. Chest Epub ahead of print May 24

    Google Scholar 

  27. Mira JP, Cariou A, Grall F,et al. (1999) Association of TNF2, a TNF-alpha promoter polymorphism, with septic shock susceptibility and mortality: a multicenter study. JAMA 282(6): 561–8

    Article  PubMed  CAS  Google Scholar 

  28. Stuber F, Petersen M, Bokelmann F, Schade U (1996) A genomic polymorphism within the tumor necrosis factor locus influences plasma tumor necrosis factor-alpha concentrations and outcome of patients with severe sepsis. Crit Care Med 24(3): 381–4

    Article  PubMed  CAS  Google Scholar 

  29. Texereau J, Pene F, Chiche JD, et al. (2004) Importance of hemostatic gene polymorphisms for susceptibility to and outcome of severe sepsis. Crit Care Med 32(5 Suppl): S313–9

    Article  PubMed  Google Scholar 

  30. Yende S, Angus DC, Ding J, et al. (2007) 4G/5G plasminogen activator inhibitor-1 polymorphisms and haplotypes are associated with pneumonia. Am J Respir Crit Care Med 176(11): 1129–37

    Article  PubMed  CAS  Google Scholar 

  31. Sapru A, Hansen H, Ajayi T, et al. (2009) 4G/5G polymorphism of plasminogen activator inhibitor-1 gene is associated with mortality in intensive care unit patients with severe pneumonia. Anesthesiology 110(5): 1086–91

    Article  PubMed  CAS  Google Scholar 

  32. Madach K, Aladzsity I, Szilagyi A, et al. (2010) 4G/5G polymorphism of PAI-1 gene is associated with multiple organ dysfunction and septic shock in pneumonia induced severe sepsis: prospective, observational, genetic study. Crit Care 14(2): R79

    Article  PubMed  Google Scholar 

  33. Hermans PW, Hibberd ML, Booy R, et al. (1999) 4G/5G promoter polymorphism in the plasminogen-activator-inhibitor-1 gene and outcome of meningococcal disease. Meningococcal Research Group. Lancet 354(9178): 556–60

    Article  PubMed  CAS  Google Scholar 

  34. Haralambous E, Hibberd ML, Hermans PW, et al. (2003) Role of functional plasminogen-activator-inhibitor-1 4G/5G promoter polymorphism in susceptibility, severity, and outcome of meningococcal disease in Caucasian children. Crit Care Med 31(12): 2788–93

    Article  PubMed  CAS  Google Scholar 

  35. Chapman SJ, Hill AVS (2012) Human genetic susceptibility to infectious disease. Nature Publishing Group 13(3): 175–88

    CAS  Google Scholar 

  36. Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145): 661–78

    Article  Google Scholar 

  37. Fellay J, Shianna KV, Ge D, et al. (2007) A whole-genome association study of major determinants for host control of HIV-1. Science 317(5840): 944–7

    Article  PubMed  CAS  Google Scholar 

  38. Kamatani Y, Wattanapokayakit S, Ochi H, et al. (2009) A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nat Genet 41(5): 591–5

    Article  PubMed  CAS  Google Scholar 

  39. Rauch A, Kutalik Z, Descombes P, et al. (2010) Genetic variation in IL28B is associated with chronic hepatitis C and treatment failure: a genome-wide association study. Gastroenterology 138(4): 1338–45

    Article  PubMed  CAS  Google Scholar 

  40. Lin CY, Chen JY, Lin TN, et al. (2011) IL28B SNP rsl2979860 is a critical predictor for on-treatment and sustained virologic response in patients with hepatitis C virus genotype-1 infection. PLoS One 6(3): e18322

    Article  PubMed  CAS  Google Scholar 

  41. Davila S, Wright VJ, Khor CC, et al. (2010) Genome-wide association study identifies variants in the CFH region associated with host susceptibility to meningococcal disease. Nat Genet 42(9): 772–6

    Article  PubMed  CAS  Google Scholar 

  42. Lu L, Ma Z, Jokiranta TS, et al. (2008) Species-specific interaction of Streptococcus pneumoniae with human complement factor H. J Immunol 181(10): 7138–46

    PubMed  CAS  Google Scholar 

  43. Haapasalo K, Vuopio J, Syrjanen J, et al. (2012) Acquisition of complement factor H is important for pathogenesis of Streptococcus pyogenes infections: evidence from bacterial in vitro survival and human genetic association. J Immunol 188(1): 426–35

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-P. Mira .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Paris

About this chapter

Cite this chapter

Geri, G., Bouglé, A., Rousseau, C., Mira, JP. (2013). Prédisposition génétique et sepsis. In: Infectiologie en réanimation. Références en réanimation. Collection de la SRLF. Springer, Paris. https://doi.org/10.1007/978-2-8178-0389-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0389-0_2

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0388-3

  • Online ISBN: 978-2-8178-0389-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics