Skip to main content

Part of the book series: Approche pratique en orthopédie - traumatologie ((APPRPRAT))

  • 758 Accesses

Résumé

Les informations contenues au début de chaque paragraphe concernent les vertébrés en général, mais les exemples spécifiques ont été obtenus le plus souvent chez la lamproie, vertébré primitif utilisé comme modèle animal parce que:

  • • la structure générale de son système nerveux central est similaire à celle des mammifères et des humains (contenant un cerveau antérieur, un tronc cérébral et une moelle spinale);

  • • la relative simplicité de son cerveau par rapport aux autres espèces permet une étude approfondie des réseaux de neurones qui y opèrent. Les différents systèmes impliqués dans la production d’une locomotion dirigée vers un but chez les vertébrés sont résumés dans la figure 1 [1] et seront détaillés dans ce paragraphe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Grillner S, Wallen P, Saitoh K, et al. (2008) Neural bases of goal-directed locomotion in vertebrates—an overview. Brain Res Rev 57: 2–12

    Article  PubMed  Google Scholar 

  2. Nielsen JB (2003) How we walk (2003) Central control of muscle activity during human walking. Neuroscientist 9: 195–204

    Article  PubMed  Google Scholar 

  3. Grillner S (1985) Neurobiological bases of rhythmic motor acts in vertebrates. Science 228(4696): 143–9

    Article  PubMed  CAS  Google Scholar 

  4. Grillner S (2003) The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci 4: 573–86

    Article  PubMed  CAS  Google Scholar 

  5. Rossignol S, Dubuc R, Gossard JP (2006) Dynamic sensorimotor interactions in locomotion. Physiol Rev 86: 89–154

    Article  PubMed  Google Scholar 

  6. Grillner S, Hellgren J, Menard A, et al. (2005) Mechanisms for selection of basic motor programs—roles for the striatum and pallidum. Trends Neurosci 28: 364–70

    Article  PubMed  CAS  Google Scholar 

  7. Hikosaka O (2007) GABAergic output of the basal ganglia. Prog Brain Res 160: 209–6

    Article  PubMed  CAS  Google Scholar 

  8. Grillner S (2006) Neuronal networks in motion from ion channels to behaviour. An R Acad Nac Med (Madr) 123: 297–8

    Google Scholar 

  9. Menard A, Auclair F, Bourcier-Lucas, et al. (2007) Descending GABAergic projections to the mesencephalic locomotor region in the lamprey Petromyzon marinus. J Comp Neurol 501: 260–73

    Article  PubMed  CAS  Google Scholar 

  10. Fagerstedt P, Orlovsky GN, Deliagina TG, et al. (2001) Lateral turns in the Lamprey. II. Activity of reticulospinal neurons during the generation of fictive turns. J Neurophysiol 86: 2257–65

    PubMed  CAS  Google Scholar 

  11. Saitoh K, Menard A, Grillner S (2007) Tectal control of locomotion, steering, and eye movements in lamprey. J Neurophysiol 97: 3093–108

    Article  PubMed  Google Scholar 

  12. Deliagina TG, Orlovsky GN (2002) Comparative neurobiology of postural control. Curr Opin Neurobiol 12: 652–7

    Article  PubMed  CAS  Google Scholar 

  13. Deliagina TG, Orlovsky GN, Zelenin PV, Beloozerova IN (2006) Neural bases of postural control. Physiology (Bethesda) 21: 216–25

    Article  Google Scholar 

  14. Grillner S, McClellan A, Perret C (1981) Entrainment of the spinal pattern generators for swimming by mechano-sensitive elements in the lamprey spinal cord in vitro. Brain Res 217: 380–6

    Article  PubMed  CAS  Google Scholar 

  15. Shefchyk SJ, Jordan LM (1985) Motoneuron input-resistance changes during fictive locomotion produced by stimulation of the mesencephalic locomotor region. J Neurophysiol 54: 1101–8

    PubMed  CAS  Google Scholar 

  16. Shik ML, Orlovskii GN, Severin FV (1968) Locomotion of the mesencephalic cat evoked by pyramidal stimulation. Biofizika 13: 127–35

    PubMed  CAS  Google Scholar 

  17. Dietz V (2003) Spinal cord pattern generators for locomotion. Clin Neurophysiol 114: 1379–89

    Article  PubMed  CAS  Google Scholar 

  18. Gossard JP, Brownstone RM, Barajon I, Hultborn H (1994) Transmission in a locomotor-related group Ib pathway from hindlimb extensor muscles in the cat. Exp Brain Res 98: 213–28

    Article  PubMed  CAS  Google Scholar 

  19. Yang JF, Stephens MJ, Vishram R (1998) Infant stepping: a method to study the sensory control of human walking. J Physiol 507: 927–37

    Article  PubMed  CAS  Google Scholar 

  20. Calancie B, Needham-Shropshire B, Jacobs P, et al. (1994) Involuntary stepping after chronic spinal cord injury. Evidence for a central rhythm generator for locomotion in man. Brain 117: 1143–59

    Article  PubMed  Google Scholar 

  21. Bussel B, Roby-Brami A, Azouvi P, et al. (1988) Myoclonus in a patient with spinal cord transection. Possible involvement of the spinal stepping generator. Brain 111: 1235–45

    Article  PubMed  Google Scholar 

  22. Bussel B, Roby-Brami A, Yakovleff A, Bennis N (1989) Late flexion reflex in paraplegic patients. Evidence for a spinal stepping generator. Brain Res Bull 22: 53–6

    Article  PubMed  CAS  Google Scholar 

  23. Dimitrijevic MR, Gerasimenko Y, Pinter MM (1998) Evidence for a spinal central pattern generator in humans. Ann N Y Acad Sci 860: 360–76

    Article  PubMed  CAS  Google Scholar 

  24. Wirz M, Colombo G, Dietz V (2001) Long term effects of locomotor training in spinal humans. J Neurol Neurosurg Psychiatry 7: 93–6

    Article  Google Scholar 

  25. Grillner S, Williams T, Lagerbäck PA (1984) The edge cell, a possible intraspinal mechanoreceptor. Science 223(4635): 500–3

    Article  PubMed  CAS  Google Scholar 

  26. Di Prisco GV, Wallen P, Grillner S (1990) Synaptic effects of intraspinal stretch receptor neurons mediating movement-related feedback during locomotion. Brain Res 530: 161–6

    Article  PubMed  Google Scholar 

  27. Pearson KG, Misiaszek JE, Fouad K (1998) Enhancement and resetting of locomotor activity by muscle afferents. Ann N Y Acad Sci 860: 203–15

    Article  PubMed  CAS  Google Scholar 

  28. Sinkjaer T, Andersen JB, Ladouceur M, et al. (2000) Major role for sensory feedback in soleus EMG activity in the stance phase of walking in man. J Physiol 523: 817–27

    Article  PubMed  CAS  Google Scholar 

  29. Le Ray D, Brocard F, Bourcier-Lucas C, et al. (2003) Nicotinic activation of reticulospinal cells involved in the control of swimming in lampreys. Eur J Neurosci 17: 137–48

    Article  PubMed  Google Scholar 

  30. Noga BR, Kriellaars DJ, Brownstone RM, Jordan LM (2003) Mechanism for activation of locomotor centers in the spinal cord by stimulation of the mesencephalic locomotor region. J Neurophysiol 90: 1464–78

    Article  PubMed  Google Scholar 

  31. Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J, et al. (2003) Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 119: 293–308

    Article  PubMed  CAS  Google Scholar 

  32. Jenkinson N, Nandi D, Miall RC, et al. (2004) Pedunculopontine nucleus stimulation improves akinesia in a Parkinsonian monkey. Neuroreport 15: 2621–4

    Article  PubMed  Google Scholar 

  33. Takakusaki K (2008) Forebrain control of locomotor behaviors. Brain Res Rev 57: 192–8

    Article  PubMed  Google Scholar 

  34. Saitoh K, Hattori S, Song WJ, et al. (2003) Nigral GABAergic inhibition upon cholinergic neurons in the rat pedunculopontine tegmental nucleus. Eur J Neurosci 18: 879–86

    Article  PubMed  Google Scholar 

  35. Moriizumi T, Nakamura Y, Tokuno H, et al. (1988) Topographic projections from the basal ganglia to the nucleus tegmenti pedunculopontinus pars compacta of the cat with special reference to pallidal projection. Exp Brain Res 71: 298–306

    Article  PubMed  CAS  Google Scholar 

  36. Takakusaki K, Saitoh K, Harada H, Kashiwayanagi M (2004) Role of basal ganglia-brainstem pathways in the control of motor behaviors. Neurosci Res 50: 137–51

    Article  PubMed  CAS  Google Scholar 

  37. Masdeu JC, Alampur U, Cavalière R, Tavoulareas G (1994) Astasia and gait failure with damage of the pontomesencephalic locomotor region. Ann Neurol35: 619–21

    Article  PubMed  CAS  Google Scholar 

  38. Culebras A, Moore JT (1989) Magnetic resonance findings in REM sleep behavior disorder. Neurology 39: 1519–23

    Article  PubMed  CAS  Google Scholar 

  39. Armstrong DM (1988) The supraspinal control of mammalian locomotion. J Physiol 405: 1–37

    PubMed  CAS  Google Scholar 

  40. Drew T, Jiang W, Kably B, Lavoie S (1996) Role of the motor cortex in the control of visually triggered gait modifications. Can J Physiol Pharmacol 74: 426–42

    PubMed  CAS  Google Scholar 

  41. Capaday C, Lavoie BA, Barbeau H, et al. (1999) Studies on the corticospinal control of human walking. I. Responses to focal transcranial magnetic stimulation of the motor cortex. J Neurophysiol 81: 129–39

    PubMed  CAS  Google Scholar 

  42. Fukuyama H, Ouchi Y, Matsuzaki S, et al. (1997) Brain functional activity during gait in normal subjects: a SPECT study. Neurosci Lett 228: 183–6

    Article  PubMed  CAS  Google Scholar 

  43. Petersen NT, Butler JE, Marchand-Pauvert V, et al. (2001) Suppression of EMG activity by transcranial magnetic stimulation in human subjects during walking. J Physiol 537: 651–6

    Article  PubMed  CAS  Google Scholar 

  44. Schubert M, Curt A, Colombo G, et al. (1999) Voluntary control of human gait: conditioning of magnetically evoked motor responses in a precision stepping task. Exp Brain Res 126: 583–8

    Article  PubMed  CAS  Google Scholar 

  45. Deliagina TG, Orlovsky GN, Selverston AI, Arshavsky YI (1999) Neuronal mechanisms for the control of body orientation in Clione I. Spatial zones of activity of different neuron groups. J Neurophysiol 82: 687–99

    PubMed  CAS  Google Scholar 

  46. Deliagina TG, Arshavsky YI, Orlovsky GN (1998) Control of spatial orientation in a mollusc. Nature 393(6681): 172–5

    Article  PubMed  CAS  Google Scholar 

  47. Deliagina TG, Orlovsky GN, Selverston AI, Arshavsky YI (2000) Neuronal mechanisms for the control of body orientation in clione II. Modifications in the activity of postural control system. J Neurophysiol 83: 367–73

    PubMed  CAS  Google Scholar 

  48. Ullén F, Deliagina T, Orlovsky G, Grillner S (1995) Spatial orientation in the lamprey. I. Control of pitch and roll. J Exp Biol 198: 665–73

    Google Scholar 

  49. Deliagina TG, Zelenin PV, Fagerstedt P, et al. (2000) Activity of reticulospinal neurons during locomotion in the freely behaving lamprey. J Neurophysiol 83: 853–63

    PubMed  CAS  Google Scholar 

  50. Pavlova EL, Deliagina TG (2002) Responses of reticulospinal neurons in intact lamprey to pitch tilt. J Neurophysiol 88: 1136–46

    PubMed  CAS  Google Scholar 

  51. Beloozerova IN, Sirota MG, Orlovsky GN, Deliagina TG (2005) Activity of pyramidal tract neurons in the cat during postural corrections.J Neurophysiol 93: 1831–44

    Article  PubMed  CAS  Google Scholar 

  52. Hikosaka O, Takikawa Y, Kawagoe R (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 80: 953–78

    PubMed  CAS  Google Scholar 

  53. Isa T (2002) Intrinsic processing in the mammalian superior colliculus. Curr Opin Neuro-biol 12: 668–77

    Article  CAS  Google Scholar 

  54. Sparks DL (2002) The brainstem control of saccadic eye movements. Nat Rev Neurosci 3: 952–64

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chastan .

Editor information

Sylvain Terver Frédéric Martins-Condé Bernard Leblanc

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Paris

About this chapter

Cite this chapter

Chastan, N. (2013). Bases neuroanatomiques de la locomotion. In: Terver, S., Martins-Condé, F., Leblanc, B. (eds) Orthopédie-traumatologie de la personne âgée fragile. Approche pratique en orthopédie - traumatologie. Springer, Paris. https://doi.org/10.1007/978-2-8178-0377-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0377-7_13

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0376-0

  • Online ISBN: 978-2-8178-0377-7

Publish with us

Policies and ethics