Skip to main content

The Behavioral Side of Clenching

  • Chapter
  • First Online:
Stress and Orality

Abstract

When patients become aware of their oral parafunction, they often call upon the sagacity of the clinician and ask the key question: “Why do I constantly clench my teeth?” This refers to a larger problem of necessary adaptation to stressors and to a more specific problem, that is, verbal expression. It involves the oral sphere and the stomatognathic system as parts of the main interhuman communication process. Clenching may instead correspond with an isometric contracture state (hypertonic mood) under the influence of non-adjusted psychoemotional stress. It generates a situation of “acting inhibition” towards one’s surroundings.

Due to their key physiological role in the oral sphere’s physiology, the paired V nerves seem to make some strong, constant, frequent impacts through overstimulation and nociception to the central trigeminal and non-trigeminal nervous structures. The different and amazing clinical impacts of clenching are more and more enlightened. So to unearth and eliminate this deleterious parafunction must be a constant thought of clinicians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The periaqueducal grey (PAG) matter serves as a link between sensory and motivation-controlling structures on the one hand and the periambigual reticular formation coordinating the activity of the different phonatory muscles on the other. The PAG matter receives a glutamatergic input from several sensory areas, such as the mediofrontal cortex, amygdala, hypothalamus, locus coeruleus, vestibular nuclei, superior and inferior colliculi, nucleus tracti solitarii, nuclei nervi trigemini (n. mesencephalicus, n. spinalis) [7, 11]. In introverted persons, is there an inhibiting phenomenon at the (PAG) level under psycho-emotional influences (Fig. 7)? Are women more sensitive to these disturbances since higher glutamate sensitivity was noted in females’ TMJ receptors [14]?

  2. 2.

    Some central nervous structures, particularly limbic structures, add an emotional impact to the adaptive system between information analysis and elaboration of response. The limbic system receives two kinds of immediate information: the first kind concerns the external environment (sensory afferents), the second concerns the internal environment (individual physiological parameters, those recorded by the hypothalamus). The limbic system usually compares these inputs from surroundings with the memorized data and adds its own emotional touch to the situation [32]. This phenomenon modulates the equilibrium between activation and inhibition as it exists at the hypothalamic or reticular levels. When this equilibrium is disturbed by unpleasant emotional factors, it affects preferentially the posterolateral hypothalamus and the corpus amygdaloideum; in this case, patients will show a rather aggressive behavior. Inversely when the ventromedial hypothalamus is affected, an action inhibition may occur. Those two situations (inhibition, aggressiveness) are not incompatible because they can affect the same patient at different moments. For some TMD patients, tension caused by expectation [13] with severe clenching may represent a behavioral starting point from which aggressive episodes occasionally occur, particularly when faced with enduring blocked situations. Hyperemotional and/or perfectionist patients cannot find a quick adequate solution to solve the problem they face. Frustration may constitute a psychological ransom, when the neocortex does not exercise its modulatory control on the limbic system and the RF. It can also be an involvement of the limbico-reticular tract: the limbic system which manages feelings and memory plays a major role in reticular activity. As for reticulo-limbic projections under painful circumstances, a condition of suffering involves two types of neurons in the rostroventromedial nuclei (RVM) of the bulbar RF (Fig. 8):

    • The off-type neurons tend to slow down the nociceptive trigeminal input from the nucleus subcaudalis; this happens with minimal or occasional input (habituation phenomena through suprasegmental pain control)

    • On the contrary, the on-type neurons tend to amplify the nociceptive responses when severe pain persists such as in TMD; here it seems that some closed circles are operating with pathophysiological components such as limbic and emotional factors, trigeminal spasticity and overstimulation, and reticular overactivity [35].

    Orofacial behaviors are always associated with emotions and their expression in the stomatognathic system: language, mimics, and gesture [5]. A close link must be considered between psycho-emotional factors and stomatognathic behavior [53] particularly in parafunctional situations. Reciprocal connections between the hypothalamus and amygdala do exist. From a clinical point of view, it is generally admitted that complex syndromes involving emotional factors may appear [27]. Above all, the amygdala seems to represent a modulator for the hypothalamus. Furthermore, stressful situations and their memory can implicate the hippocampus through the phenomenon of long-term potentiation in which the hippocampic neurons have the ability to develop excitative postsynaptic potentials during very long periods of time, even several months [40]. The main interconnections between the limbic structures in the memory process are better known today. Considering their hypothalamic projections, excessive and nociceptive parafunctional trigeminal afferents (severe clenching) may well interfere in hypothalamo-hippocampic connections.

References

  1. Abubaker AO, Wassim FR, Raslan WF, Sotereanos GC (1993) Estrogen and progesterone receptors in temporomandibular joint discs of symptomatic and asymptomatic persons: a ­preliminary study. J Oral Maxillofac Surg 51(10):1095–1100

    Google Scholar 

  2. Ahlberg J, Savolainen A, Rantala M et al (2004) Reported bruxism and biopsychosocial ­symptoms: a longitudinal study. Community Dent Oral Epidemiol 32(4):307–311

    Article  PubMed  CAS  Google Scholar 

  3. Areso MP, Giralt MT, Sainz B et al (1999) Occlusal disharmonies modulate central ­catecholaminergic activity in the rat. J Dent Res 78(6):1204–1213

    Article  PubMed  CAS  Google Scholar 

  4. Bossy J (1990) Anatomie clinique: neuro-anatomie. Springer Verlag (éd), Paris

    Google Scholar 

  5. Chase PF, Rosenoer L (1999) Parameters of odontostomatognathic disability: guidelines for evaluation of impaired simple complex human functions involving the odontostomatognathic functional system. Cranio 17(1):70–76

    PubMed  CAS  Google Scholar 

  6. Curran SL, Carlson CR, Okeson JP (1996) Emotional and physiologic response to laboratory challenges: patients with temporomandibular disorders versus matched control subjects. J Orofac Pain 10(2):141–150

    PubMed  CAS  Google Scholar 

  7. Dujardin E, Jürgens U (2005) Afferents of vocalization-controlling periaqueducal regions in the squirrel monkey. Brain Res 1034(1–2):114–131

    Article  PubMed  CAS  Google Scholar 

  8. Fine E (1971) Psychological factors associated with non-organic temporomandibular joint pain-dysfunction syndrome. Br Dent J 131:402–404

    Article  PubMed  CAS  Google Scholar 

  9. Green CS, Laskin DM (1983) Long-term evaluation of treatment for myofascial pain-­dysfunction syndrome: a comparative analysis. J Am Dent Assoc 107(2):253–258

    Google Scholar 

  10. Hatch JP, Rugh JD, Sakai S, Saunders MJ (2001) Is use of exogenous estrogen associated with temporomandibular signs and symptoms? J Am Dent Assoc 132(3):319–326

    PubMed  CAS  Google Scholar 

  11. Jürgens U (1994) The role of the periaqueducal grey in vocal behaviour. Behav Brain Res 62(2):107–117

    Article  PubMed  Google Scholar 

  12. Korszun A, Young EA, Singer K et al (2002) Basal circadian cortisol secretion in women with temporomandibular disorders. J Dent Res 81(4):279–283

    Article  PubMed  CAS  Google Scholar 

  13. Laborit H (1986) L’inhibition de l’action. Biologie comportementale et physiopathologique, 2nd edn. Masson (éd), Montréal

    Google Scholar 

  14. Lam DK, Sessle BJ, Cairns BE, Hu JW (2005) Neural mechanisms of temporomandibular joint and masticatory muscle pain: a possible role for peripheral glutamate receptor mechanisms. Pain Res Manag 10(3):145–152

    PubMed  Google Scholar 

  15. Lautenbacher S, Spernal J, Schreiber W, Krieg JC (1999) Relationship between clinical pain complaints and pain sensitivity in patients with depression and panic disorders. Psychosom Med 61:822–827

    PubMed  CAS  Google Scholar 

  16. Lejoyeux H (1988) Hormones et cancer. Pour une écologie sexuelle dans la vie moderne. In: Les thérapeutiques du stress. Les Entretiens de Monaco. Edit du Rocher, Monaco, p 63

    Google Scholar 

  17. Lent C, Dickinson M (1988) Neurobiologie et alimentation de la sangsue. Pour la Science 130:82–87

    Google Scholar 

  18. LeResche L, Saunders K, Von Korff MR et al (1997) Use of exogenous hormones and risk of temporomandibular disorder pain. Pain 69(1–2):153–160

    Article  PubMed  CAS  Google Scholar 

  19. LeResche L, Mancl L, Sherman JJ et al (2003) Changes in temporomandibular pain and other symptoms across the menstrual cycle. Pain 106(3):253–261

    Article  PubMed  Google Scholar 

  20. Liang YC, Huang CC, Hsu KS (2005) Characterization of long-term potentiation of primary afferent transmission at trigeminal synapses of juvenile rats: essential role of subtype 5 metabotropic glutamate receptors. Pain 114(3):417–428

    Article  PubMed  CAS  Google Scholar 

  21. Lupton DA (1969) Psychological aspects of TMJ dysfunction. J Am Dent Assoc 79:131

    PubMed  CAS  Google Scholar 

  22. Marbach JJ (1978) Facial pain and anxiety levels: considerations for treatment. J Prosthet Dent 40:434–437

    Article  PubMed  CAS  Google Scholar 

  23. Meisler JG (1999) Chronic pain conditions in women. J Womens Health 8(3):313–320

    Article  PubMed  CAS  Google Scholar 

  24. Melis M, Lobo SL, Ceneviz C et al (2010) Effect of cigarette smoking on pain intensity of TMD patients: a pilot study. Cranio 28(3):187–192

    PubMed  Google Scholar 

  25. Molina OF, Dos Santos J, Nelson SJ, Nowlin T (2000) Profile of TMD and bruxer compared to TMD and nonbruxer patients regarding chief complaint, previous consultations, modes of therapy, and chronicity. Cranio 18(3):205–218

    PubMed  CAS  Google Scholar 

  26. Moody PM, Kemper JT, Okesson JP et al (1982) Recent life changes and myofascial pain syndrome. J Prosthet Dent 48(3):328–330

    Article  PubMed  CAS  Google Scholar 

  27. N’Guyen JP, Keravel Y, Poirier J (1987) Vues anatomiques commentées du rhinencéphale. Encycl Med Chir, Paris, Neurol 17001(R 10):1–22

    Google Scholar 

  28. Okamoto K, Hirata H, Takeshita S, Bereiter DA (2003) Response properties of TMJ units in superficial laminae at the spinomedullary junction of female rats vary over the estrous cycle. J Neurophysiol 89(3):1467–1477

    Article  PubMed  CAS  Google Scholar 

  29. Olson GB, Peters CJ, Franger AL (1988) The incidence and severity of premenstrual syndrome among female craniomandibular pain patients. Cranio 6(4):330–338

    PubMed  CAS  Google Scholar 

  30. Ong KS, Keng SB (2003) The biological, social, and psychological relationship between depression and chronic pain. Cranio 21(4):286–294

    PubMed  CAS  Google Scholar 

  31. Otsuka T, Watanabe K, Hirano Y et al (2009) Effects of mandibular deviation on brain activation during clenching: an fMRI preliminary study. Cranio 27(2):88–93

    PubMed  Google Scholar 

  32. Paris CJ (1991) L’amineptine: effet antidépresseur et restauration de l’anticipation, vol 4. Référence (Lancet), Sympos Monte-Carlo, Monaco, pp 13–15

    Google Scholar 

  33. Puri V, Cui L, Liverman CS et al (2005) Ovarian steroids regulate neuropeptides in the trigeminal ganglion. Neuropeptides 39(4):409–417

    Article  PubMed  CAS  Google Scholar 

  34. Puri V, Chandrala S, Puri S et al (2006) Ghrelin is expressed in trigeminal neurons of female mice in phase with the estrous cycle. Neuropeptides 40(1):35–46

    Article  PubMed  CAS  Google Scholar 

  35. Renaud J (1991) Le cerveau exagère la douleur. Sci Vie 891:48–165

    Google Scholar 

  36. Rothwell PS (1972) Personality and temporomandibular joint dysfunction. Oral Surg 34:734–742

    Article  PubMed  CAS  Google Scholar 

  37. Rugh JD, Lemke RR (1984) Significance in oral habits. In: Matarazzo JD et al (eds) Behavioural health: a handbook of heath enhancement and disease prevention. Wiley, New York, p 947

    Google Scholar 

  38. Shärer P (1971) Recherches sur l’organisation des mouvements masticateurs et parafonctionnels. Rev Franç Odont Stomatol 4:75–80

    Google Scholar 

  39. Shipman WG, Green CS, Laskin DM (1974) Correlation of placebo responses and personality characteristics in myofascial pain-dysfunction (MPD) patients. J Psychosom Res 18:475–483

    Article  PubMed  CAS  Google Scholar 

  40. Shors JT, Matzel LD (1997) Long-term potentiation: what’s learning got to do with it? Behav Brain Sci 20:597–655

    PubMed  CAS  Google Scholar 

  41. Sipilä K, Veijola J, Jokelainen J et al (2001) Association of symptoms of TMD and orofacial pain with alexithymia: an epidemiological study of the Northern Finland 1966 Birth Cohort. Cranio 19(4):246–251

    PubMed  Google Scholar 

  42. Slavicek R (1996) Reflexions sur les soi-disant parafonctions. Trad Hurez C. Rev Orthop Dentofac 30:75–88

    Article  Google Scholar 

  43. Southwell J, Deary IJ, Geisler P (1990) Personality and anxiety in temporomandibular joint syndrome. J Oral Rehabil 17:239–243

    Article  PubMed  CAS  Google Scholar 

  44. Speculand B, Goss AN (1985) Physiological factors in temporomandibular joint dysfunction pain. Int J Oral Surg 14:131–137

    Article  PubMed  CAS  Google Scholar 

  45. Steed PA, Wexler GB (2001) Temporomandibular disorders-traumatic etiology vs. nontraumatic etiology: a clinical and methodological inquiry into symptomatology and treatment outcomes. Cranio 19(3):188–194

    PubMed  CAS  Google Scholar 

  46. Stein S, Loft G, Davis H, Hart DL (1982) Symptoms of TMJ dysfunction as related to stress measured by social readjustment rating scale. J Prosthet Dent 47:545–548

    Article  PubMed  CAS  Google Scholar 

  47. Stockstill JW, Callahan CD (1991) Personality hardiness, anxiety, and depression as constructs of interest in the study of temporomandibular disorders. J Craniomandib Disord 5:129–134

    PubMed  CAS  Google Scholar 

  48. Thomass LJ, Tiber N, Schireson S (1973) The effects of anxiety and frustration on muscular tension related to the temporomandibular joint syndrome. J Dent Res 36(5):763–768

    Google Scholar 

  49. Uursin H, Kaaba BR (1980) Functional localization within the amygdaloid complex in the cat. Electroencephalogr Clin Neurophysiol 12:1–20

    Google Scholar 

  50. Vimpari SS, Knuttila ML, Sakki TK, Kivela SL (1995) Depressive symptoms associated with symptoms of the temporomandibular joint pain and dysfunction syndrome. Psychosom Med 57:439–444

    PubMed  CAS  Google Scholar 

  51. Warren MP, Fried JL (2001) Temporomandibular disorders and hormones in women. Cells Tissues Organs 169(3):187–192

    Article  PubMed  CAS  Google Scholar 

  52. Yamada K, Nozawa-Inoue K, Kawano Y et al (2003) Expression of estrogen receptor alpha (ER alpha) in the rat temporomandibular joint. Anat Rec A Discov Mol Cell Evol Biol 274(2):934–941

    Article  PubMed  Google Scholar 

  53. Yardin M (1995) Odontologie globale. Masson (éd), Paris

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag France

About this chapter

Cite this chapter

Hartmann, F., Cucchi, G. (2014). The Behavioral Side of Clenching. In: Stress and Orality. Springer, Paris. https://doi.org/10.1007/978-2-8178-0271-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0271-8_10

  • Published:

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0270-1

  • Online ISBN: 978-2-8178-0271-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics