Skip to main content

Hierarchical Composite Anti-Disturbance Control for Robotic Systems Using Robust Disturbance Observer

  • Chapter
Robot Intelligence

Part of the book series: Advanced Information and Knowledge Processing ((AI&KP))

Abstract

A new anti-disturbance control strategy is presented for a class of nonlinear robotic systems with multiple disturbances. This strategy is named hierarchical composite anti-disturbance control (HCADC). Two types of disturbances are studied. One is generated by an exogenous system with uncertainty and the other is described by an uncertain vector with the bounded H 2 norm. The hierarchical control strategy is established which includes a disturbance observer based controller (DOBC) and an H controller, where DOBC is used to reject the first type of disturbance and H controller is used to attenuate the second. Stability analysis for both the error estimation systems and the composite closed-loop system is provided. Simulations for a two-link manipulator system show that the desired disturbance attenuation and rejection performances can be guaranteed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spong, M.W., Vidyasagar, M.: Robot Dynamics and Control. Wiley, New York (1989)

    Google Scholar 

  2. Basar, T., Bernhard, P.: H -Optimal Control and Related Minimax Design Problems: a Dynamic Game Approach. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  3. Guo, L.: H output feedback control for delay systems withnonlinear and parametric uncertainties. IEE Proc., Control Theory Appl. 149, 226–236 (2002)

    Article  Google Scholar 

  4. Byrnes, C.I., Delli Priscoli, F., Isidori, A.: Output Regulation of Uncertain Nonlinear Systems. Birkhauser, Basel (1997)

    Book  MATH  Google Scholar 

  5. Ding, Z.T.: Asymptotic rejection of asymmetric periodic disturbances in output-feedback nonlinear systems. Automatica 43, 555–561 (2007)

    Article  MATH  Google Scholar 

  6. Nikiforov, V.O.: Nonlinear servocompensation of unknown external disturbances. Automatica 37, 1647–1653 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Serrani, A.: Rejection of harmonic disturbances at the controller input via hybrid adaptive external models. Automatica 42, 1977–1985 (2006)

    Article  MathSciNet  Google Scholar 

  8. Guo, L., Feng, C., Chen, W.: A survey of disturbance-observer-based control for dynamic nonlinear system. Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 13E, 79–84 (2006)

    Google Scholar 

  9. Radke, A., Gao, Z.: A survey of state and disturbance observers for practitioners. In: Proceedings of American Control Conference, Minneapolis, 14–16 June 2006

    Google Scholar 

  10. Bickel, R., Tomizuka, R.: Passivity-based versus disturbance observer based robot control:equivalence and stability. ASME J. Dyn. Syst. Control Meas. 121, 41–47 (1999)

    Article  Google Scholar 

  11. Mallon, N., van de Wouw, N., Putra, D., Nijmeijer, H.: Friction compensation in a controlled one-link robot using a reduced-order observer. IEEE Trans. Control Syst. Technol. 14, 374–383 (2006)

    Article  Google Scholar 

  12. Guo, L., Chen, W.-H.: Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. Int. J. Robust Nonlinear Control 15, 109–125 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, W.: Disturbance observer based control for nonlinear systems. IEEE/ASME Trans. Mechatron. 9(4), 706–710 (2004)

    Article  Google Scholar 

  14. She, J., Ohyama, Y., Nakano, M.: A new approach to the estimation and rejection of disturbances in servo systems. IEEE Trans. Control Syst. Technol. 13, 378–385 (2005)

    Article  Google Scholar 

  15. Yang, Z., Tsubakihara, H.: A novel robust nonlinear motion controller with disturbance observer. IEEE Trans. Control Syst. Technol. 16(1), 137–147 (2008)

    Article  Google Scholar 

  16. Back, J., Shimb, H.: Adding robustness to nominal output-feedback controllers for uncertain nonlinear systems: a nonlinear version of disturbance observer. Automatica 44, 2528–2537 (2008)

    Article  MATH  Google Scholar 

  17. Guo, L., Wen, X.-Y.: Hierarchical anti-distance adaptive control for nonlinear systems with composite disturbances. Trans. Inst. Meas. Control (2009, to appear)

    Google Scholar 

  18. Wei, X., Guo, L.: Composite disturbance-observer-based control and H control for complex continuous models. International Journal of Robust and nonlinear Control (2009, to appear). doi:10.1002/rnc.1425

  19. Xu, J.M., Zhou, Q.J., Leung, T.P.: Implicit adaptive inverse control of robot manipulators. In: Proceedings of the IEEE Conference on Robotics and Automation, Atlanta, pp. 334–339 (1993)

    Google Scholar 

Download references

Acknowledgement

This work was supported by 863 programme, 973 programme and National Science Foundation of China and the JSPS fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Guo .

Editor information

Editors and Affiliations

Appendices

Appendix A: Proof of the Lemma 11.1

Denoting a Lyapunov candidate

$$ \begin{array}{*{20}c} {\prod (x,t) = x^T P_x + \frac{1}{{\lambda ^2 }}\int_0^t {\left[ {\left\| {U\dot x} \right\|^2 - \left\| {f(\dot x,\tau )} \right\|^2 } \right]d\tau } } \\ { + \frac{1}{{\lambda _1^2 }}\int_0^t {\left[ {\left\| {U_1 x} \right\|^2 - \left\| {f_1 (x,\tau )} \right\|^2 } \right]d\tau } } \\ \end{array} $$
(11.12)

then we have

$$ \begin{array}{l} \begin{array}{*{20}c} {\dot \prod (x,t) = \dot x^T P_x + x^T P\dot x + \frac{1}{{\lambda ^2 }}\left[ {\left\| {U\dot x} \right\|^2 - \left\| {f(\dot x,\tau )} \right\|^2 } \right]} \\ { + \frac{1}{{\lambda _1^2 }}\left[ {\left\| {U\dot x} \right\|^2 - \left\| {f(\dot x,\tau )} \right\|^2 } \right]} \\ \end{array} \\ = x^T \left[ {PA + A^T P + \frac{1}{{\lambda ^2 }}A^T U^T UA + \frac{1}{{\lambda _1^2 }}U_1^T U_1 } \right]x \\ + x^T \left[ {\lambda PF + \frac{1}{\lambda }A^T U^T UF\quad \lambda _1 PF_1 + \frac{{\lambda _1 }}{{\lambda ^2 }}A^T U^T UF_1 } \right]q \\ + q^T \left[ {\lambda PF + \frac{1}{\lambda }A^T U^T UF\quad \lambda _1 PF_1 + \frac{{\lambda _1 }}{{\lambda ^2 }}A^T U^T UF_1 } \right]^T x \\ + q^T \left[ {\begin{array}{*{20}c} {F^T U^T UF - 1} & {\frac{{\lambda _1 }}{\lambda }F^T U^T F_1 } \\ {\frac{{\lambda _1 }}{\lambda }F_1^T U^T UF} & {\frac{{\lambda _1^2 }}{{\lambda ^2 }}F_1^T U^T UF_1 - 1} \\ \end{array}} \right]q \\ = \left[ {\begin{array}{*{20}c} x \\ q \\ \end{array}} \right]^T \left[ {\begin{array}{*{20}c} {PA + A^T P + C_H^T C_H } & {PB_H + C_H^T D_H } \\ {B_H^T P + D_H^T C_H } & {D_H^T D_H - 1} \\ \end{array}} \right]\left[ {\begin{array}{*{20}c} x \\ q \\ \end{array}} \right] \\ \end{array} $$
(11.13)

where B H , C H , D H is denoted by (11.7), and \(q^{T}=[-(\frac{1}{\lambda}f)^{T}\ (\frac{1}{\lambda_{1}}f_{1})^{T}]\). Denote

$$M_1=\left[\begin{array}{c@{\quad}c}PA+A^TP+C_H^TC_H&PB_H+C_H^TD_H\\[4pt]B_H^TP+D_H^TC_H&D_H^TD_H-I\end{array}\right].$$

Based on Schur complement, it can be seen that M 1<0⇔M 2<0 where

$$ M_2 = \left[ {\begin{array}{*{20}c} {PA + A^T P} & {PB_H } & {C_H^T } \\ {B_H^T P} & { - I} & {D_H^T } \\ {C_H } & {D_H } & { - 1} \\ \end{array}} \right]. $$

Thus \(\dot{\Pi}(x,t)<0\Leftrightarrow M_{2}<0\), i.e. if M 2<0 holds, system (11.1) is asymptotic stable.

Appendix B: Proof of the Lemma 11.2

For system (11.5), select a Lyapunov candidate as (11.12), and denote the following auxiliary function (known as the storage function)

$$J:=\int^{t}_0\left[z^Tz-\gamma^2w^Tw+\dot{\Pi}(x,t)\right]dt.$$

It can be verified that

$$ \begin{array}{l} z^T z - \gamma ^2 w^T w + \dot \prod (x,t) \\ = x^T C^T C_x - \gamma ^2 w^T w + \dot x^T Px + x^T P\dot x + \frac{1}{{\lambda ^2 }}\left[ {\left\| {U\dot x} \right\|^2 - \left\| {f(\dot x,\tau )} \right\|^2 } \right] \\ + \frac{1}{{\lambda _1^2 }}\left[ {\left\| {U\dot x} \right\|^2 - \left\| {f(\dot x,\tau )} \right\|^2 } \right] \\ = x^T \left[ {PA + A^T P + \frac{1}{{\lambda ^2 }}A^T U^T UA + \frac{1}{{\lambda _1^2 }}U_1^T U_1 + C^T C} \right]x \\ + w^T \left[ { + \frac{1}{{\lambda ^2 }}B^T U^T UB - \gamma ^2 I} \right]w \\ + q^T \left[ {\begin{array}{*{20}c} {F^T U^T F - 1} & {\frac{{\lambda _1 }}{\lambda }F^T U^T UF_1 } \\ {\frac{{\lambda _1 }}{\lambda }F_1^T U^T UF} & {\frac{{\lambda _1^2 }}{{\lambda ^2 }}F_1^T U^T UF_1 - 1} \\ \end{array}} \right] \\ + q^T \left[ {\begin{array}{*{20}c} {\frac{1}{\lambda }F^T U^T F_1 } \\ {\frac{\lambda }{\lambda }F_1^T U^T UB} \\ \end{array}} \right]w + w^T \left[ {\begin{array}{*{20}c} {\frac{1}{\lambda }F^T U^T UB} \\ {\frac{{\lambda _1 }}{{\lambda ^2 }}F_1^T U^T UB} \\ \end{array}} \right]^T q \\ + x^T \left[ {\lambda PF + \frac{1}{\lambda }A^T U^T UF\quad \lambda _1 PF_1 + \frac{{\lambda _1 }}{{\lambda ^2 }}A^T U^T UF_1 } \right]q \\ + q^T \left[ {\lambda PF + \frac{1}{\lambda }A^T U^T UF\quad \lambda _1 PF_1 + \frac{{\lambda _1 }}{{\lambda ^2 }}A^T U^T UF_1 } \right]^T x \\ + x^T \left[ {PB + \frac{1}{{\lambda ^2 }}A^T U^T UB} \right]w + w^T \left[ {PB + \frac{1}{{\lambda ^2 }}A^T U^T UB} \right]^T x \\ = \left[ {\begin{array}{*{20}c} x \\ q \\ w \\ \end{array}} \right]^T \left[ {\begin{array}{*{20}c} {PA + A^T P + C_H^T C_H + C^T C} & {PB + \frac{1}{{\lambda ^2 }}A^T U^T UB} & {PB + C_H^T E_H } \\ {B_H^T P + D_H^T C_H } & {D_H^T D_H - 1} & {D_H^T E_H } \\ {B^T P + E_H^T C_H } & {E_H^T D_H } & {E_H^T E_H - \gamma ^2 I} \\ \end{array}} \right] \\ \times \left[ {\begin{array}{*{20}c} x \\ q \\ w \\ \end{array}} \right]. \\ \end{array} $$
(11.14)

Denote M 3 as

$$ M_3 = \left[ {\begin{array}{*{20}c} {PA + A^T P + C_H^T C_H + C^T C} & {PB + C_H^T D_H } & {PB + C_H^T E_H } \\ {B_H^T P + D_H^T C_H } & {D_H^T D_H - 1} & {D_H^T E_H } \\ {B^T P + E_H^T C_H } & {E_H^T D_H } & {E_H^T E_H - \gamma ^2 I} \\ \end{array}} \right] $$
(11.15)

where B H , C H , D H is also denoted by (11.7), and

$$ \begin{array}{*{20}c} {E_H = \left[ {\begin{array}{*{20}c} { - \frac{1}{\lambda }UB} \\ 0 \\ \end{array}} \right],} & {q^T = \left[ {\begin{array}{*{20}c} { - \left( {\frac{1}{\lambda }f} \right)^T } & {\left( {\frac{1}{{\lambda _1 }}f_1 } \right)^T } \\ \end{array}} \right]} \\ \end{array}. $$

Based on Schur complement, it can be seen that M 3<0⇔M 4<0 where

$$ M_4 = \left[ {\begin{array}{*{20}c} {PA + A^T P} & {PB_H } & {PB} & {C_H^T } & {C^T } \\ {B_H^T P} & { - I} & 0 & {D_H^T } & 0 \\ {B^T P} & 0 & { - \gamma ^2 I} & {E_H^T } & 0 \\ {C_H } & {D_H } & {E_H } & { - I} & 0 \\ C & 0 & 0 & 0 & { - I} \\ \end{array}} \right]. $$

Exchanging of rows and columns yields that M 4<0⇔M 5<0, where

$$ M_5 = \left[ {\begin{array}{*{20}c} {PA + A^T P} & {PB_H } & {C_H^T } & {PB} & {C^T } \\ {B_H^T P} & { - I} & {D_H^T } & 0 & 0 \\ {C_H } & {D_H } & { - I} & {E_H } & 0 \\ {B^T P} & 0 & {E_H^T } & { - \gamma ^2 I} & 0 \\ C & 0 & 0 & 0 & { - I} \\ \end{array}} \right]. $$

Since M 5<0 implies that M 2<0, system (11.5) is asymptotically stable in the absence of the disturbance d(t) with zero initial condition. Furthermore, since \(J=\int^{\infty}_{0}[z^{T}z-\gamma^{2}w^{T}w]dt+\Pi(x,t)\), then J<0 holds when M 5<0 holds, which implies that ‖z2<γd2.

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Guo, L., Wen, XY., Xin, X. (2010). Hierarchical Composite Anti-Disturbance Control for Robotic Systems Using Robust Disturbance Observer. In: Liu, H., Gu, D., Howlett, R., Liu, Y. (eds) Robot Intelligence. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/978-1-84996-329-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-329-9_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-328-2

  • Online ISBN: 978-1-84996-329-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics