Skip to main content

Histological Features of Lungs

  • Chapter
  • First Online:
Principles of Pulmonary Protection in Heart Surgery

Abstract

The histological features of the lung are diverse when considering the processes that compromise the cardiac pump. The organic impairment of the heart can occur due to one of the following mechanisms: loss of blood; irregular heartbeat; flow obstruction; regurgitation; contractile impairment (systolic failure); or inadequate filling (diastolic failure).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gehlbach BK, BK GE. The pulmonary manifestations of left heart failure. Chest. 2004;125(2):669-682.

    Article  PubMed  Google Scholar 

  2. Ramadan MM, Okura Y, Ohno Y, et al. Comparative analysis of systolic and isolated diastolic dysfunction: Sado heart failure study. Int Heart J. 2008;49(4):459-469.

    Article  PubMed  Google Scholar 

  3. Vandiviere HM. Pulmonary hypertension and cor pulmonale. South Med J. 1993;86(10):2S7-2S10.

    PubMed  CAS  Google Scholar 

  4. De Pasquale CG, Arnolda LF, Doyle IR, Grant RL, Aylward PE, Bersten AD. Prolonged alveolocapillary barrier damage after acute cardiogenic pulmonary edema. Crit Care Med. 2003;31(4):1060-1067.

    Article  PubMed  Google Scholar 

  5. Rasche K, Orth M, Duchna HW. Sequels of lung diseases on cardiac function. Med Klin (Munich). 2006;101(suppl 1):44-46 (abstract).

    Google Scholar 

  6. West JB. Cellular responses to mechanical stress. J Appl Physiol. 2000;89(2):2483-2489.

    PubMed  CAS  Google Scholar 

  7. Bhattacharya J. Pressure-induced capillary stress failure: is it regulated? Am J Physiol Lung Cell Mol Physiol. 2003;284:L701-L702.

    PubMed  CAS  Google Scholar 

  8. Han MK, McLaughlin VV, Criner GJ, Martinez FJ. Pulmonary diseases and the heart. Circulation. 2007;116(25):2992-3005.

    Article  PubMed  Google Scholar 

  9. Scannell G. Leukocyte responses to hypoxic/ischemic conditions. New Horiz. 1996;4:179-183.

    PubMed  CAS  Google Scholar 

  10. Gutierrez G, Brown SD. Gastrointestinal tonometry: a monitor of regional dysoxia. New Horiz. 1996;4:413-419.

    PubMed  CAS  Google Scholar 

  11. Parks DA, Granger DN. Contributions of ischemia and reperfusion to mucosal lesion formation. Am J Physiol. 1986;250:G749-G753.

    PubMed  CAS  Google Scholar 

  12. Korthuis RJ, Smith JK, Carden DL. Hypoxic reperfusion attenuates postischemic microvascular injury. Am J Physiol. 1989;256:H315-H319.

    PubMed  CAS  Google Scholar 

  13. Reily PM, Schiller HJ, Bulkley GB. Pharmacologic approach to tissue injury mediated by free radicals and other reactive oxygen metabolites. Am J Surg. 1991;161:488-503.

    Article  Google Scholar 

  14. Becker LC, Ambrosio G. Myocardial consequences of reperfusion. Prog Cardiovasc Dis. 1987;30:23-44.

    Article  PubMed  CAS  Google Scholar 

  15. Horiguchi T, Harada Y. The effect of protease inhibitor on reperfusion injury after unilateral pulmonary ischemia. Transplantation. 1993;55:254-258.

    Article  PubMed  CAS  Google Scholar 

  16. Klausner JM, Paterson IS, Kobzik L, Valeri CR, Shepro D, Hechtman HB. Oxygen free radicals mediate ischemia-induced lung injury. Surgery. 1989;105:192-199.

    PubMed  CAS  Google Scholar 

  17. Ar’rajab A, Dawidson I, Fabia R. Reperfusion injury. New Horiz. 1996;4:224-234.

    PubMed  Google Scholar 

  18. Marenzi G, Agostoni P. Hemofiltration in heart failure. Int J Artif Organs. 2004;27(12):1070-1076.

    PubMed  CAS  Google Scholar 

  19. Matthay MA, Fukuda N, Frank J, Kallet R, Daniel B, Sakuma T. Alveolar epithelial barrier. Role in lung fluid balance in clinical lung injury. Clin Chest Med. 2000;21(3):477-490.

    Article  PubMed  CAS  Google Scholar 

  20. Ichihara S, Senbonmatsu T, Price E Jr, Ichiki T, Gaffney FA, Inagami T. Angiotensin II type 2 receptor is essential for left ventricular hypertrophy and cardiac fibrosis in chronic angiotensin II-induced hypertension. Circulation. 2001;104(3):346-351.

    Article  PubMed  CAS  Google Scholar 

  21. Zemans RL, Matthay MA. Bench-to-bedside review: the role of the alveolar epithelium in the resolution of pulmonary edema in acute lung injury. Crit Care. 2004;8(6):469-477.

    Article  PubMed  Google Scholar 

  22. Mutlu GM, Sznajder JI. Mechanisms of pulmonary edema clearance. Am J Physiol Lung Cell Mol Physiol. 2005;289(5):L685-L695.

    Article  PubMed  CAS  Google Scholar 

  23. Haddy FJ, Stephens G, Visscher MB. The physiology and pharmacology of lung edema. Pharmacol Ver. 1956;8(3):389-434.

    CAS  Google Scholar 

  24. Uhley H, Leeds SE, Sampson JJ, Friedman M. Some observations on the role of the lymphatics in experimental acute pulmonary edema. Circ Res. 1961;9:688.

    Article  PubMed  CAS  Google Scholar 

  25. Grainger RU. Interstitial pulmonary oedema and its radiological diagnosis: a sign of pulmonary venous antecapillary hypertension. Br J Radiol. 1958;31(364):201.

    Article  PubMed  CAS  Google Scholar 

  26. Brown CC Jr, Fry DL, Ebert RV. The mechanics of pulmonary ventilation in patients with heart disease. Am J Med. 1954;17(4):438.

    Article  PubMed  Google Scholar 

  27. Rosenow EC III, Harrison CE Jr. Congestive heart failure masquerading as primary pulmonary disease. Chest. 1970;58(1):28-36.

    Article  PubMed  Google Scholar 

  28. de Castro Zampieri FM, Canzian M, Parra ER, Kairalla RA, Capelozzi VL. Alveolar-capillary membrane dysfunction in heart failure: histopathological changes. Eur Resp J. 2008; 661s, abstract.

    Google Scholar 

  29. Mandinov L, Eberli FR, Seiler C, Hess OM. Diastolic heart failure. Cardiovasc Res. 2000;45(4):813-825.

    Article  PubMed  CAS  Google Scholar 

  30. Campbell FE. Cardiac effects of pulmonary disease. Vet Clin N Am Small Anim Pract. 2007;37(5):949-962.

    Article  Google Scholar 

  31. Ravi K, Kappagoda CT. Left ventricular dysfunction and extravascular fluid in the lung: physiological basis for symptoms. Indian J Chest Dis Allied Sci. 2008;50(1):7-18.

    PubMed  Google Scholar 

  32. Snow JB, Kitzis V, Norton CE, et al. Differential effects of chronic hypoxia and intermittent hypocapnic and eucapnic hypoxia on pulmonary vasoreactivity. J Appl Physiol. 2008;104(1):110-118.

    Article  PubMed  CAS  Google Scholar 

  33. Thiedemann KU, Ferrans VJ. Left atrial ultrastructure in mitral valvular disease. Am J Pathol. 1977;89(3):575-604.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Luiza Capelozzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Capelozzi, V.L., Parra, E.R. (2010). Histological Features of Lungs. In: Gabriel, E., Salerno, T. (eds) Principles of Pulmonary Protection in Heart Surgery. Springer, London. https://doi.org/10.1007/978-1-84996-308-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-308-4_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-307-7

  • Online ISBN: 978-1-84996-308-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics