Skip to main content

Irreversible Stochastic Processes, Coupled Diffusions and Systems Biochemistry

  • Chapter
Frontiers in Computational and Systems Biology

Part of the book series: Computational Biology ((COBO,volume 15))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.-P. Qian and M. Qian. The decomposition into a detailed balance part and a circulation part of an irreversible stationary Markov chain. Sci Sin A, 22:69–79, 1979.

    Google Scholar 

  2. M.-P. Qian and M. Qian. Circulation for recurrent Markov chain. Z Wahrscheinlichkeitstheor Verw Geb, 59:203–210, 1982.

    Article  MATH  Google Scholar 

  3. Y. Zhang, M.-P. Qian, Q. Ouyang, M. Deng, F. Li, and C. Tang. Stochastic model of yeast cell-cycle network. Physica, 219:35–39, 2006.

    MathSciNet  MATH  Google Scholar 

  4. E. Schrödinger. What is Life? Cambridge University Press, Cambridge, 1944.

    Google Scholar 

  5. P.J. Choi, L. Cai, K. Frieda, and X.S. Xie. A stochastic single-molecule event triggers phenotype switching of a bacterial cell. Science, 322:442–446, 2008.

    Article  Google Scholar 

  6. M.W. Deem. Mathematical adventures in biology. Phys Today, January: 42–47, 2007. (Feature article).

    Google Scholar 

  7. D.A. Beard and H. Qian. Chemical Biophysics: Quantitative Analysis of Cellular System. Cambridge University Press, London, 2008.

    Book  MATH  Google Scholar 

  8. M. Qian and B. Zhang. Multi-dimensional coupled diffusion process. Acta Math Appl Sin, 2:168–179, 1984.

    Google Scholar 

  9. Z. Guo, M. Qian, and M.-P. Qian. Minimal coupled diffusion process. Acta Math Appl Sin, 3:58–69, 1987.

    MATH  Google Scholar 

  10. F. Zhang. Exponential convergence of coupled diffusion processes. J Math Phys, 46:063304, 2005.

    Article  MathSciNet  Google Scholar 

  11. G.E. Briggs and J.B.S. Haldane. A note on the kinetics of enzyme action. Biochem J, 19:338–339, 1925.

    Google Scholar 

  12. I.H. Segel. Enzyme Kinetics, Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems. Wiley-Interscience, New York, 1993.

    Google Scholar 

  13. X.S. Xie and H.P. Lu. Single-molecule enzymology. J Biol Chem, 274:15967–15970, 1999.

    Article  Google Scholar 

  14. H. Qian. Open-system nonequilibrium steady state: statistical thermodynamics, fluctuations, and chemical oscillations. J Phys Chem B, 110:15063–15074, 2006.

    Article  Google Scholar 

  15. H. Qian. Cooperativity and specificity in enzyme kinetics: a single-molecule time-based perspective. Biophys J, 95:10–17, 2008.

    Article  Google Scholar 

  16. D.-Q. Jiang, M. Qian, and M.-P. Qian. Mathematical Theory of Nonequilibrium Steady States: On the Frontier of Probability and Dynamical Systems. Springer, New York, 2004.

    Book  MATH  Google Scholar 

  17. K. Kamata, M. Mitsuya, T. Nishimura, J. Eiki, and Y. Nagata. Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase. Structure, 429–438, 2004.

    Google Scholar 

  18. G.R. Welch. The Fluctuating Enzyme. Wiley, New York, 1986.

    Google Scholar 

  19. J.A. Hanson, H. Yang, et al.. Illuminating the mechanistic roles of enzyme conformational dynamics. Proc Natl Acad Sci, 104:18055–18060, 2007.

    Article  Google Scholar 

  20. H. Qian and P.-Z. Shi. Fluctuating enzyme and its biological functions: positive cooperativity without multiple states. J Phys Chem B, 113:2225–2230, 2009.

    Article  Google Scholar 

  21. H. Qian. The mathematical theory of molecular motor movement and chemomechanical energy transduction. J Math Chem, 27(3), 2000.

    Google Scholar 

  22. F. Jacob and J. Monod. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol, 3:318–356, 1961.

    Article  Google Scholar 

  23. H. Qian, M. Qian, and X. Tang. Thermodynamics of the general diffusion process: Time-reversibility and entropy production. J Stat Phys, 107:1129–1141, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Qian, P.-Z. Shi, and J. Xing. Stochastic bifurcation, slow fluctuations, and bistability as an origin of biochemical complexity. Phys Chem Chem Phys, 11:4861–4870, 2009.

    Article  Google Scholar 

  25. R.B. Lehoucq, D.C. Sorensen, and C. Yang. ARPACK User’s Guide. Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Method. SIAM, Philadelphia, 1998.

    Book  Google Scholar 

  26. E.V. Koonin. Darwinian evolution in the light of genomics. Nucleic Acids Res, 37:1011–1034, 2009.

    Article  Google Scholar 

  27. W.J. Ewens. Mathematical Population Genetics, 2nd edition. Springer, Berlin, 2004.

    Book  MATH  Google Scholar 

  28. J.H. Gillespie. The Causes of Molecular Evolution. Oxford University Press, London, 1991.

    Google Scholar 

  29. J. Schnakenberg. Network theory of microscopic and macroscopic behaviour of master equation systems. Rev Mod Phys, 48:571–585, 1976.

    Article  MathSciNet  Google Scholar 

  30. K. Tomita and H. Tomita. Irreversible circulation of fluctuation. Prog Theor Phys, 51:1731–1749, 1974.

    Article  Google Scholar 

  31. R.K.P. Zia and B. Schmittmann. Probability currents as principal characteristics in the statistical mechanics of non-equilibrium steady states. J Stat Mech Theor Exp, 07012, 2007.

    Google Scholar 

  32. D. Andrieux and P. Gaspard. Fluctuation theorem for currents and Schnakenberg network theory. J Stat Phys, 127:107–131, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  33. G. Nicolis and I. Prigogine. Self-Organization in Nonequilibrium Systems. Wiley-Interscience, New York, 1977.

    MATH  Google Scholar 

  34. T.L. Hill. Free Energy Transduction in Biology: The Steady-state Kinetic and Thermodynamic Formalism. Academic Press, New York, 1977.

    Google Scholar 

  35. M. Qian, G.X. Wang, and X.J. Zhang. Stochastic resonance on a circle without excitation: Physical investigation and peak frequency formula. Phys Rev E, 62:6469, 2000.

    Article  Google Scholar 

  36. H. Qian and M. Qian. Pumped biochemical reactions, nonequilibrium circulation, and stochastic resonance. Phys Rev Lett, 84:2271–2274, 2000.

    Article  Google Scholar 

Download references

Acknowledgement

P.-Z. Shi would like to thank Prof. Min-Ping Qian for her instructions, encouragement, and inspiration during his study and work at Peking University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-Zhe Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Shi, PZ., Qian, H. (2010). Irreversible Stochastic Processes, Coupled Diffusions and Systems Biochemistry. In: Feng, J., Fu, W., Sun, F. (eds) Frontiers in Computational and Systems Biology. Computational Biology, vol 15. Springer, London. https://doi.org/10.1007/978-1-84996-196-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-196-7_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-195-0

  • Online ISBN: 978-1-84996-196-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics