Skip to main content

Variants of Support Vector Machines

  • Chapter
  • First Online:

Part of the book series: Advances in Pattern Recognition ((ACVPR))

Abstract

Since the introduction of support vector machines, numerous variants have been developed. In this chapter, we discuss some of them: least-squares support vector machines, linear programming support vector machines, sparse support vector machines, etc. We also discuss learning paradigms: incremental training, learning using privileged information, semi-supervised learning, multiple classifier systems, multiple kernel learning, and other topics: confidence level and visualization of support vector machines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For regular SVMs, this fact was shown in [11].

  2. 2.

    Strictly speaking this statement is wrong, because support vector machines are not linear-transformation invariant. But by cross-validation, the difference of the generalization abilities may be small.

  3. 3.

    Discussions with Prof. H. Motoda.

References

  1. B. Baesens, S. Viaene, T. Van Gestel, J. A. K. Suykens, G. Dedene, B. De Moor, and J. Vanthienen. An empirical assessment of kernel type performance for least squares support vector machine classifiers. In Proceedings of the Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies (KES 2000), volume 1, pages 313–316, Brighton, UK, 2000.

    Google Scholar 

  2. J. A. K. Suykens. Least squares support vector machines for classification and nonlinear modelling. Neural Network World, 10(1–2):29–47, 2000.

    MathSciNet  Google Scholar 

  3. J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle. Least Squares Support Vector Machines. World Scientific Publishing, Singapore, 2002.

    Book  Google Scholar 

  4. J. A. K. Suykens and J. Vandewalle. Multiclass least squares support vector machines. In Proceedings of International Joint Conference on Neural Networks (IJCNN '99), volume 2, pages 900–903, Washington, DC, 1999.

    Google Scholar 

  5. F. Masulli and G. Valentini. Comparing decomposition methods for classification. In Proceedings of the Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies (KES 2000), volume 2, pages 788–791, Brighton, UK, 2000.

    Google Scholar 

  6. J. A. K. Suykens, L. Lukas, and J. Vandewalle. Sparse least squares support vector machine classifiers. In Proceedings of the Eighth European Symposium on Artificial Neural Networks (ESANN 2000), pages 37–42, Bruges, Belgium, 2000.

    Google Scholar 

  7. G. C. Cawley and N. L. C. Talbot. A greedy training algorithm for sparse least-squares support vector machines. In J. R. Dorronsoro, editor, Artificial Neural Networks (ICANN 2002)–-Proceedings of International Conference, Madrid, Spain, pages 681–686. Springer-Verlag, Berlin, Germany, 2002.

    Google Scholar 

  8. D. Tsujinishi, Y. Koshiba, and S. Abe. Why pairwise is better than one-against-all or all-at-once. In Proceedings of International Joint Conference on Neural Networks (IJCNN 2004), volume 1, pages 693–698, Budapest, Hungary, 2004.

    Google Scholar 

  9. D. Tsujinishi and S. Abe. Fuzzy least squares support vector machines. In Proceedings of International Joint Conference on Neural Networks (IJCNN 2003), volume 2, pages 1599–1604, Portland, OR, 2003.

    Google Scholar 

  10. D. Tsujinishi and S. Abe. Fuzzy least squares support vector machines for multiclass problems. Neural Networks, 16(5–6):85–792, 2003.

    Google Scholar 

  11. C.-W. Hsu and C.-J. Lin. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 13(2):415–425, 2002.

    Article  Google Scholar 

  12. J. A. K. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural Processing Letters, 9(3):293–300, 1999.

    Article  MathSciNet  Google Scholar 

  13. K. P. Bennett. Combining support vector and mathematical programming methods for classification. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods: Support Vector Learning, pages 307–326. MIT Press, Cambridge, MA, 1999.

    Google Scholar 

  14. A. Smola, B. Schölkopf, and G. Rätsch. Linear programs for automatic accuracy control in regression. In Proceedings of the Ninth International Conference on Artificial Neural Networks (ICANN '99), volume 2, pages 575–580, Edinburgh, UK, 1999.

    Google Scholar 

  15. V. Kecman and I. Hadzic. Support vectors selection by linear programming. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN 2000), volume 5, pages 193–198, Como, Italy, 2000.

    Google Scholar 

  16. W. Zhou, L. Zhang, and L. Jiao. Linear programming support vector machines. Pattern Recognition, 35(12):2927–2936, 2002.

    Article  MATH  Google Scholar 

  17. T. Graepel, R. Herbrich, B. Schölkopf, A. Smola, P. Bartlett, K.-R. Müller, K. Obermayer, and R. Williamson. Classification on proximity data with LP-machines. In Proceedings of the Ninth International Conference on Artificial Neural Networks (ICANN '99), volume 1, pages 304–309, Edinburgh, UK, 1999.

    Google Scholar 

  18. B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, 2002.

    Google Scholar 

  19. P. S. Bradley and O. L. Mangasarian. Massive data discrimination via linear support vector machines. Optimization Methods and Software, 13(1):1–10, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  20. Y. Torii and S. Abe. Decomposition techniques for training linear programming support vector machines. Neurocomputing, 72(4-6):973–984, 2009.

    Article  Google Scholar 

  21. S. Abe. Fuzzy LP-SVMs for multiclass problems. In Proceedings of the Twelfth European Symposium on Artificial Neural Networks (ESANN 2004), pages 429–434, Bruges, Belgium, 2004.

    Google Scholar 

  22. C. J. C. Burges. Simplified support vector decision rules. In L. Saitta, editor, Machine Learning, Proceedings of the Thirteenth International Conference (ICML '96), Bari, Italy, pages 71–77. Morgan Kaufmann, San Francisco, 1996.

    Google Scholar 

  23. S. S. Keerthi, O. Chapelle, and D.DeCoste. Building support vector machines with reduced classifier complexity. Journal of Machine Learning Research, 7:1493–1515, 2006.

    MathSciNet  Google Scholar 

  24. L. Wang, S. Sun, and K. Zhang. A fast approximate algorithm for training L1-SVMs in primal space. Neurocomputing, 70(7–9):1554–1560, 2007.

    Article  Google Scholar 

  25. T. Ban, Y. Kadobayashi, and S. Abe. Sparse kernel feature analysis using FastMap and its variants. In Proceedings of the 2009 International Joint Conference on Neural Networks (IJCNN 2009), pages 256–263, Atlanta, GA, 2009.

    Google Scholar 

  26. M. Wu, B. Schölkopf, and G Bakir. A direct method for building sparse kernel learning algorithms. Journal of Machine Learning Research, 7:603–624, 2006.

    Google Scholar 

  27. S. Abe. Sparse least squares support vector training in the reduced empirical feature space. Pattern Analysis and Applications, 10(3):203–214, 2007.

    Article  MathSciNet  Google Scholar 

  28. S. Abe. Sparse least squares support vector machines by forward selection based on linear discriminant analysis. In L. Prevost, S. Marinai, and F. Schwenker, editors, Artificial Neural Networks in Pattern Recognition: Proceedings of Third IAPR Workshop, ANNPR 2008, Paris, France, pages 54–65. Springer-Verlag, Berlin, Germany, 2008.

    Google Scholar 

  29. K. Iwamura and S. Abe. Sparse support vector machines trained in the reduced empirical feature space. In Proceedings of the 2008 International Joint Conference on Neural Networks (IJCNN 2008), pages 2399–2405, Hong Kong, China, 2008.

    Google Scholar 

  30. K. Iwamura and S. Abe. Sparse support vector machines by kernel discriminant analysis. In Proceedings of the Seventeenth European Symposium on Artificial Neural Networks (ESANN 2009), pages 367–372, Bruges, Belgium, 2009.

    Google Scholar 

  31. M. E. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1:211–244, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  32. S. Chen, X. Hong, C. J. Harris, and P. M. Sharkey. Sparse modelling using orthogonal forward regression with PRESS statistic and regularization. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 34(2):898–911, 004.

    Article  Google Scholar 

  33. J. Zhu and T. Hastie. Kernel logistic regression and the import vector machine. Journal of Computational and Graphical Statistics, 14(1):185–205, 2005.

    Article  MathSciNet  Google Scholar 

  34. K. Tanaka, T. Kurita, and T. Kawabe. Selection of import vectors via binary particle swarm optimization and cross-validation for kernel logistic regression. In Proceedings of the 2007 International Joint Conference on Neural Networks (IJCNN 2007), pages 1037–1042, Orlando, FL, 2007.

    Google Scholar 

  35. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer-Verlag, New York, 2001.

    Google Scholar 

  36. G. C. Cawley and N. L. C. Talbot. Improved sparse least-squares support vector machines. Neurocomputing, 48(1–4):1025–1031, 2002.

    Article  MATH  Google Scholar 

  37. J. Valyon and G. Horváth. A sparse least squares support vector machine classifier. In Proceedings of International Joint Conference on Neural Networks (IJCNN 2004), volume 1, pages 543–548, Budapest, Hungary, 2004.

    Google Scholar 

  38. L. Jiao, L. Bo, and L. Wang. Fast sparse approximation for least squares support vector machine. IEEE Transactions on Neural Networks, 18(3):685–697, 2007.

    Article  Google Scholar 

  39. S. Abe. Comparison of sparse least squares support vector regressors trained in the primal and dual. In Proceedings of the Sixteenth European Symposium on Artificial Neural Networks (ESANN 2008), pages 469–474, Bruges, Belgium, 2008.

    Google Scholar 

  40. Y. Xu, D. Zhang, Z. Jin, M. Li, and J.-Y. Yang. A fast kernel-based nonlinear discriminant analysis for multi-class problems. Pattern Recognition, 39(6):1026–1033, 2006.

    Article  MATH  Google Scholar 

  41. K. Kaieda and S. Abe. KPCA-based training of a kernel fuzzy classifier with ellipsoidal regions. International Journal of Approximate Reasoning, 37(3):189–217, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  42. M. Ashihara and S. Abe. Feature selection based on kernel discriminant analysis. In S. Kollias, A. Stafylopatis, W. Duch, and E. Oja, editors, Artificial Neural Networks (ICANN 2006)–-Proceedings of the Sixteenth International Conference, Athens, Greece, Part II, pages 282–291. Springer-Verlag, Berlin, Germany, 2006.

    Google Scholar 

  43. J. Weston. Leave-one-out support vector machines. In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI-99), volume 2, pages 727–733, Stockholm, Sweden, 1999.

    Google Scholar 

  44. X. Zhang. Using class-center vectors to build support vector machines. In Neural Networks for Signal Processing IX–-Proceedings of the 1999 IEEE Signal Processing Society Workshop, pages 3–11, 1999.

    Google Scholar 

  45. R. Herbrich and J. Weston. Adaptive margin support vector machines for classification. In Proceedings of the Ninth International Conference on Artificial Neural Networks (ICANN '99), volume 2, pages 880–885, Edinburgh, UK, 1999.

    Google Scholar 

  46. J. Weston and R. Herbrich. Adaptive margin support vector machines. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 281–295. MIT Press, Cambridge, MA, 2000.

    Google Scholar 

  47. Z. Kou, J. Xu, X. Zhang, and L. Ji. An improved support vector machine using class-median vectors. In Proceedings of the Eighth International Conference on Neural Information Processing (ICONIP-2001), Paper ID# 60, Shanghai, China, 2001.

    Google Scholar 

  48. H. Nakayama and T. Asada. Support vector machines using multi objective programming and goal programming. In Proceedings of the Ninth International Conference on Neural Information Processing (ICONIP '02), volume 2, pages 1053–1057, Singapore, 2002.

    Google Scholar 

  49. J.-H. Chen. M-estimator based robust kernels for support vector machines. In Proceedings of the Seventeenth International Conference on Pattern Recognition (ICPR 2004), volume 1, pages 168–171, Cambridge, UK, 2004.

    Google Scholar 

  50. S. Abe. Pattern Classification: Neuro-Fuzzy Methods and Their Comparison. Springer-Verlag, London, 2001.

    Google Scholar 

  51. D. Decoste and B. Schölkopf. Training invariant support vector machines. Machine Learning, 46(1–3):161–190, 2002.

    Article  MATH  Google Scholar 

  52. Y. Bengio and Y. LeCun. Scaling learning algorithms toward AI. In L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors, Large-Scale Kernel Machines, pages 321–359. MIT Press, Cambridge, MA, 2007.

    Google Scholar 

  53. V. Vapnik and A. Vashist. A new learning paradigm: Learning using privileged information. Neural Networks, 22(5–6):544–557, 2009.

    Article  Google Scholar 

  54. C. J. C. Burges and B. Schölkopf. Improving the accuracy and speed of support vector machines. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 375–381, 1997.

    Google Scholar 

  55. S. Amari and S. Wu. Improving support vector machine classifiers by modifying kernel functions. Neural Networks, 12(6):783–789, 1999.

    Article  Google Scholar 

  56. S. Amari and S. Wu. An information-geometrical method for improving the performance of support vector machine classifiers. In Proceedings of the Ninth International Conference on Artificial Neural Networks (ICANN '99), volume 1, pages 85–90, Edinburgh, UK, 1999.

    Google Scholar 

  57. L. Lukas, A. Devos, J. A. K. Suykens, L. Vanhamme, S. Van Huffel, A. R. Tate, C. Majós, and C. Arús. The use of LS-SVM in the classification of brain tumors based on magnetic resonance spectroscopy signals. In Proceedings of the Tenth European Symposium on Artificial Neural Networks (ESANN 2002), pages 131–136, Bruges, Belgium, 2002.

    Google Scholar 

  58. J. Feng and P. Williams. The generalization error of the symmetric and scaled support vector machines. IEEE Transactions on Neural Networks, 12(5):1255–1260, 2001.

    Article  Google Scholar 

  59. B. Goertzel and J. Venuto. Accurate SVM text classification for highly skewed data using threshold tuning and query-expansion-based feature selection. In Proceedings of the 2006 International Joint Conference on Neural Networks (IJCNN 2006), pages 2199–2204, Vancouver, Canada, 2006.

    Google Scholar 

  60. F. Aiolli, G. Da San Martino and A. Sperduti. A kernel method for the optimization of the margin distribution. In V. Kůrková, R. Neruda, and J. Koutnik, editors, Artificial Neural Networks (ICANN 2008)―Proceedings of the Eighteenth International Conference, Prague, Czech Republic, Part I, pages 305–314. Springer-Verlag, Berlin, Germany, 2008.

    Google Scholar 

  61. T. Inoue and S. Abe. Improvement of generalization ability of multiclass support vector machines by introducing fuzzy logic and Bayes theory. Transactions of the Institute of Systems, Control and Information Engineers, 15(12):643–651, 2002 (in Japanese).

    Google Scholar 

  62. G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts. Machine Learning, 23(1):69–101, 1996.

    Google Scholar 

  63. Z. Erdem, R. Polikar, F. Gurgen, and N. Yumusak. Ensemble of SVMs for incremental learning. In N. C. Oza, R. Polikar, J. Kittler, and F. Roli, editors, Multiple Classifier Systems―-Proceedings of the Sixth International Workshop, MCS 2005, Seaside, CA, pages 246–256. Springer-Verlag, Berlin, Germany, 2005.

    Google Scholar 

  64. G. Cauwenberghs and T. Poggio. Incremental and decremental support vector machine learning. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 409–415. MIT Press, Cambridge, MA, 2001.

    Google Scholar 

  65. A. Shilton, M. Palaniswami, D. Ralph, and A. C. Tsoi. Incremental training of support vector machines. In Proceedings of International Joint Conference on Neural Networks (IJCNN '01), Washington, DC, 2001.

    Google Scholar 

  66. P. Laskov, C. Gehl, S. Krüger, and K.-R. Müller. Incremental support vector learning: Analysis, implementation and applications. Journal of Machine Learning Research, 7:1909–1936, 2006.

    Google Scholar 

  67. P. Mitra, C. A. Murthy, and S. K. Pal. Data condensation in large databases by incremental learning with support vector machines. In Proceedings of Fifteenth International Conference on Pattern Recognition (ICPR 2000), volume 2, pages 2708–2711, Barcelona, Spain, 2000.

    Google Scholar 

  68. J. P. Pedroso and N. Murata. Optimisation on support vector machines. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN 2000), volume 6, pages 399–404, Como, Italy, 2000.

    Google Scholar 

  69. R. Xiao, J. Wang, and F. Zhang. An approach to incremental SVM learning algorithm. In Proceedings of the Twelfth IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2000), pages 268–273, Vancouver, Canada, 2000.

    Google Scholar 

  70. C. Domeniconi and D. Gunopulos. Incremental support vector machine construction. In Proceedings of the 2001 IEEE International Conference on Data Mining (ICDM 2001), pages 589–592, San Jose, CA, 2001.

    Google Scholar 

  71. L. Ralaivola and F. d'Alché-Buc. Incremental support vector machine learning: A local approach. In G. Dorffner, H. Bischof, and K. Hornik, editors, Artificial Neural Networks (ICANN 2001)―Proceedings of International Conference, Vienna, Austria, pages 322–330. Springer-Verlag, Berlin, Germany, 2001.

    Google Scholar 

  72. S. Katagiri and S. Abe. Incremental training of support vector machines using hyperspheres. Pattern Recognition Letters, 27(13):1495–1507, 2006.

    Article  Google Scholar 

  73. S. Katagiri and S. Abe. Incremental training of support vector machines using truncated hypercones. In F. Schwenker and S. Marinai, editors, Artificial Neural Networks in Pattern Recognition: Proceedings of Second IAPR Workshop, ANNPR 2006, Ulm, Germany, pages 153–164. Springer-Verlag, Berlin, Germany, 2006.

    Google Scholar 

  74. A. Yalcin, Z. Erdem, and F. Gurgen. Ensemble based incremental SVM classifiers for changing environments. In Proceedings of Twenty-Second International Symposium on Computer and Information Sciences (ISCIS 2007), pages 204–208, Ankara, Turkey, 2007.

    Google Scholar 

  75. T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularization path for the support vector machine. Journal of Machine Learning Research, 5:1391–1415, 2004.

    MathSciNet  Google Scholar 

  76. V. Vapnik. Estimation of Dependences Based on Empirical Data, Second Edition. Springer-Verlag, New York, 2006.

    Google Scholar 

  77. A. Singh, R. D. Nowak, and X. Zhu. Unlabeled data: Now it helps, now it doesn't. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages 1513–1520. MIT Press, Cambridge, MA, 2009.

    Google Scholar 

  78. M. M. Adankon and M. Cheriet. Help-training semi-supervised LS-SVM. In Proceedings of the 2009 International Joint Conference on Neural Networks (IJCNN 2009), pages 49–56, Atlanta, GA, 2009.

    Google Scholar 

  79. R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: Transfer learning from unlabeled data. In Proceedings of the Twenty-Fourth International Conference on Machine Learning (ICML 2007), pages 759–766, Corvallis, OR, 2007.

    Google Scholar 

  80. K. Huang, Z. Xu, I. King, M. R. Lyu, and C. Campbell. Supervised self-taught learning: Actively transferring knowledge from unlabeled data. In Proceedings of the 2009 International Joint Conference on Neural Networks (IJCNN 2009), pages 1272–1277, Atlanta, GA, 2009.

    Google Scholar 

  81. T. Joachims. Transductive support vector machines. In O. Chapelle, B. Schölkopf, and A. Zien, editors, Semi-Supervised Learning, pages 105–117. MIT Press, Cambridge, MA, 2006.

    Google Scholar 

  82. V. Sindhwani and S. S. Keerthi. Newton methods for fast semisupervised linear SVMs. In L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors, Large-Scale Kernel Machines, pages 155–174. MIT Press, Cambridge, MA, 2007.

    Google Scholar 

  83. S. Pang, T. Ban, Y. Kadobayashi, and N. Kasabov. Spanning SVM tree for personalized transductive learning. In C. Alippi, M. Polycarpou, C. Panayiotou, and G. Ellinas, editors, Artificial Neural Networks (ICANN 2009)―Proceedings of the Nineteenth International Conference, Limassol, Cyprus, Part I, pages 913–922. Springer-Verlag, Berlin, Germany, 2009.

    Google Scholar 

  84. S. Haykin. Neural Networks: A Comprehensive Foundation, Second Edition. Prentice Hall, Upper Saddle River, NJ, 1999.

    Google Scholar 

  85. T. Windeatt and F. Roli, editors. Multiple Classifier Systems―Proceedings of the fourth International Workshop, MCS 2003, Guildford, UK. Springer-Verlag, Berlin, Germany, 2003.

    Google Scholar 

  86. L. I.Kuncheva. Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons Hoboken, NJ, 2004

    Book  Google Scholar 

  87. D. Martinez and G. Millerioux. Support vector committee machines. In Proceedings of the Eighth European Symposium on Artificial Neural Networks (ESANN 2000), pages 43–48, Bruges, Belgium, 2000.

    Google Scholar 

  88. A. Schwaighofer and V. Tresp. The Bayesian committee support vector machine. In G. Dorffner, H. Bischof, and K. Hornik, editors, Artificial Neural Networks (ICANN 2001)―Proceedings of International Conference, Vienna, Austria, pages 411–417. Springer-Verlag, Berlin, Germany, 2001.

    Google Scholar 

  89. N. H. C. Lima, A. D. D. Neto, and J. D. de Melo. Creating an ensemble of diverse support vector machines using Adaboost. In Proceedings of the 2009 International Joint Conference on Neural Networks (IJCNN 2009), pages 1802–1806, Atlanta, GA, 2009.

    Google Scholar 

  90. P. Vincent and Y. Bengio. K-local hyperplane and convex distance nearest neighbor algorithms. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 985–992, Cambridge, MA, 2002. MIT Press.

    Google Scholar 

  91. T. Yang and V. Kecman. Adaptive local hyperplane classification. Neurocomputing, 71(13–15):3001–3004, 2008.

    Article  Google Scholar 

  92. D. Martínez-Rego, O. Fontenla-Romero, I. Porto-Díaz, and A. Alonso-Betanzos. A new supervised local modelling classifier based on information theory. In Proceedings of the 2009 International Joint Conference on Neural Networks (IJCNN 2009), pages 2014–2020, Atlanta, GA, 2009.

    Google Scholar 

  93. G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. I. Jordan. Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research, 5:27–72, 2004.

    Google Scholar 

  94. S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large scale multiple kernel learning. Journal of Machine Learning Research, 7:1531–1565, 2006.

    Google Scholar 

  95. A. D. Dileep and C. C. Sekhar. Representation and feature selection using multiple kernel learning. In Proceedings of the 2009 International Joint Conference on Neural Networks (IJCNN 2009), pages 717–722, Atlanta, GA, 2009.

    Google Scholar 

  96. A. Gammerman, V. Vovk, and V. Vapnik. Learning by transduction. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI '98), pages 148–155, Madison, WI, 1998.

    Google Scholar 

  97. V. Vovk, A. Gammerman, and C. Saunders. Machine-learning applications of algorithmic randomness. In I. Bratko and S. Dzeroski, editors, Machine Learning, Proceedings of the Sixteenth International Conference (ICML '99), Bled, Slovenia, pages 444–453. Morgan Kaufmann, San Francisco, 1999.

    Google Scholar 

  98. J. C. Platt. Probabilities for SV machines. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 61–73. MIT Press, Cambridge, MA, 2000.

    Google Scholar 

  99. P. Frasconi, A. Passerini, and A. Vullo. A two-stage SVM architecture for predicting the disulfide bonding state of cysteines. In H. Bourlard, T. Adali, S. Bengio, J. Larsen, and S. Douglas, editors, Neural Networks for Signal Processing XII―Proceedings of the 2002 IEEE Signal Processing Society Workshop, pages 25–34, 2002.

    Google Scholar 

  100. G. Fumera and F. Roli. Support vector machines with embedded reject option. In S.-W. Lee and A. Verri, editors, Pattern Recognition with Support Vector Machines: Proceedings of First International Workshop, SVM 2002, Niagara Falls, Canada, pages 68–82. Springer-Verlag, Berlin, Germany, 2002.

    Google Scholar 

  101. H. Núnẽz, C. Angulo, and Català. Rule extraction from support vector machines. In Proceedings of the Tenth European Symposium on Artificial Neural Networks (ESANN 2002), pages 107–112, Bruges, Belgium, 2002.

    Google Scholar 

  102. D. Caragea, D. Cook, and V. Honavar. Towards simple, easy-to-understand, yet accurate classifiers. In Proceedings of the Third IEEE International Conference on Data Mining (ICDM 2003), pages 497–500, Melbourne, FL, 2003.

    Google Scholar 

  103. X. Fu, C.-J. Ong, S. S. Keerthi, G. G. Hung, and L. Goh. Extracting the knowledge embedded in support vector machines. In Proceedings of International Joint Conference on Neural Networks (IJCNN 2004), volume 1, pages 291–296, Budapest, Hungary, 2004.

    Google Scholar 

  104. L. Franke, E. Byvatov, O. Werz, D. Steinhilber, P. Schneider, and G. Schneider. Extraction and visualization of potential pharmacophore points using support vector machines: Application to ligand-based virtual screening for COX-2 inhibitors. Journal of Medical Chemistry, 48(22):6997–7004, 2005.

    Article  Google Scholar 

  105. J. Diederich (Ed.). Rule Extraction from Support Vector Machines. Springer-Verlag, Berlin, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeo Abe .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Abe, S. (2010). Variants of Support Vector Machines. In: Support Vector Machines for Pattern Classification. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-84996-098-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-098-4_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-097-7

  • Online ISBN: 978-1-84996-098-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics