Skip to main content

Abstract

In this chapter, we are summarizing the basic principles underlying intracardiac electrogram recording and interpretation, some of their technical and clinical applications in cardiac electrophysiology, and the signal processing steps required in various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Mathematical descriptions of electrogram or electrocardiogram recordings have used different physical models. In a model of an electrical dipole in a volume conductor and using principles enounced by Helmholtz in 1853, the amplitude (V) is inversely proportional to the square of the distance (V = M × cos α × R –2)8, 9 where M is the moment of the dipole, R is the distance from the recording electrode to the dipole, and α is the angle between the dipole and the distance vector. Using solid angle and dipole moment,10 the recorded signal amplitude (E) is proportional to the surface area of the excitation front (A) and inversely proportional to the square of the distance (R) [E = (A/R 2 ) × (V/4π)], where V is the voltage across the cell membrane. More complex equations have been used to describe effects of electrical activity in strands or cables (cells, Purkinje fibers).11

  2. 2.

    The “sharpness” of the potential (V) signal can be simplistically described by dV/dt; the distance exponent in the first derivative will be higher: if V ∼ surface area of excitation front (S) × R –2, then sharpness of electrograms (∼dV/dt) is ∼S × (−2) × (dR/dt) × R –3; hence, the slope and sharpness of the recorded signal decrease with increasing distance even more rapidly than the amplitude of the signal.

  3. 3.

    This derives from these simple models, because if the distance between electrodes is L, and if L << R, then V1–V2 ≈ dV, which is proportional to d(R n) = n × (R n–1) × dR = n × (R n–1) × dL× cos α, where α is the angle between the vector of the distance to the signal source dipole and the line between the two electrodes (Fig. 19.4).

References

  1. Samojloff A. Weitere Beiträge zur Elektrophysiologie des Herzens. Pflugers Arch. 1910; 135: 417–468.

    Article  Google Scholar 

  2. Faraday M. On electrical decomposition. Phys Trans R Soc. 1834.

    Google Scholar 

  3. Wilson FN, Johnston FD, Macleod AG, et al. Electrocardiograms that represent the potential variations of a single electrode. Am Heart J. 1934;9:447–458.

    Article  Google Scholar 

  4. Kadish AH, Morady F, Rosenheck S, et al. The effect of electrode configuration on the unipolar His-bundle electrogram. Pacing Clin Electrophysiol. 1989;12(9):1445–1450.

    Article  PubMed  CAS  Google Scholar 

  5. Josephson ME. Electrophysiologic investigation: technical aspects. In: Josephson ME, ed. Clinical Cardiac Electrophysiology. 4th ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2008.

    Google Scholar 

  6. Stevenson WG, Soejima K. Recording techniques for clinical electrophysiology. J Cardiovasc Electrophysiol. 2005;16(9):1017–1022.

    Article  PubMed  Google Scholar 

  7. Scher AM, Spach MS. Cardiac depolarization and repolarization and the electrogram. In: Berne RM, ed. Handbook of Physiology. Bethesda, MD: American Physiological Society; 1979:372.

    Google Scholar 

  8. Wilson FN, MacLeod AG, Barker PS. The Distribution of the Currents of Action and of Injury Displayed by Heart Muscle and Other Excitable Tissues. Ann Arbor, MI: University of Michigan Press; 1933.

    Google Scholar 

  9. Wilson FN, Bayley RH. The electric field of an eccentric dipole in a homogeneous spherical conducting medium. Circulation. 1950;1(1):84–92.

    Article  PubMed  CAS  Google Scholar 

  10. Scher AM, Young AC. Ventricular depolarization and the genesis of QRS. Ann N Y Acad Sci. 1957;65(6):768–778.

    Article  PubMed  CAS  Google Scholar 

  11. Spach MS, Barr RC, Serwer GA, et al. Extracellular potentials related to intracellular action potentials in the dog Purkinje system. Circ Res. 1972;30(5):505–519.

    Article  PubMed  CAS  Google Scholar 

  12. Durrer D, Van Der Twell LH. Spread of activation in the left ventricular wall of the dog. I. Am Heart J. 1953;46(5):683–691.

    Article  PubMed  CAS  Google Scholar 

  13. Schaefer H, Trautwein W. Further experiments on the nature of the excitation wave in the myocardium of the dog. Pflugers Arch. 1951;253(2):152–164.

    Article  PubMed  CAS  Google Scholar 

  14. Biermann M, Shenasa M, Borggrefe M, et al. Interpretation of cardiac electrograms. In: Shenasa M, Borggrefe M, Breithardt G, eds. Cardiac Mapping. 2nd ed. Elmsford, NY: Blackwell/Futura; 2003:15–39.

    Google Scholar 

  15. Spach MS, Dolber PC. Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle. Evidence for electrical uncoupling of side-to-side fiber connections with increasing age. Circ Res. 1986;58(3):356–371.

    Article  PubMed  CAS  Google Scholar 

  16. Spach MS, Kootsey JM. Relating the sodium current and conductance to the shape of transmembrane and extracellular potentials by simulation: effects of propagation boundaries. IEEE Trans Biomed Eng. 1985;32(10):743–755.

    Article  PubMed  CAS  Google Scholar 

  17. Steinhaus BM. Estimating cardiac transmembrane activation and recovery times from unipolar and bipolar extracellular electrograms: a simulation study. Circ Res. 1989;64(3):449–462.

    Article  PubMed  CAS  Google Scholar 

  18. Blanchard SM, Buhrman WC, Tedder M, et al. Concurrent activation detection from unipolar and bipolar electrodes. Pacing Clin Electrophysiol. 1988;11:525.

    Google Scholar 

  19. Paul T, Moak JP, Morris C, et al. Epicardial mapping: how to measure local activation? Pacing Clin Electrophysiol. 1990;13(3):285–292.

    Article  PubMed  CAS  Google Scholar 

  20. Pieper CF, Blue R, Pacifico A. Influence of time of sampling onset on parameters used for activation time determination in computerized intraoperative mapping. Pacing Clin Electro­physiol. 1991;14(12):2187–2192.

    Article  PubMed  CAS  Google Scholar 

  21. Pieper CF, Blue R, Pacifico A. Activation time detection algorithms used in computerized intraoperative cardial mapping. A comparison with manually determined activation times. J Cardiovasc Electrophysiol. 1991;2(5):388–397.

    Article  Google Scholar 

  22. Kaplan DT, Smith JS, Rosenbaum D, et al. On the precision of automated activation time estimation. Comput Cardiol. 1987;14:101–104.

    Google Scholar 

  23. Scherlag BJ, Samet P, Helfant RH. His bundle electrogram. A critical appraisal of its uses and limitations. Circulation. 1972;46:601–613.

    Article  Google Scholar 

  24. Cassidy DM, Vassallo JA, Marchlinski FE, et al. Endocardial mapping in humans in sinus rhythm with normal left ventricles: activation patterns and characteristics of electrograms. Circulation. 1984;70(1):37–42.

    Article  PubMed  CAS  Google Scholar 

  25. Josephson ME, Horowitz LN, Spielman SR, et al. Role of catheter mapping in the preoperative evaluation of ventricular tachycardia. Am J Cardiol. 1982;49(1):207–220.

    Article  PubMed  CAS  Google Scholar 

  26. Vassallo JA, Cassidy DM, Marchlinski FE, et al. Abnormalities of endocardial activation ­pattern in patients with previous healed myocardial infarction and ventricular tachycardia. Am J Cardiol. 1986;58(6):479–484.

    Article  PubMed  CAS  Google Scholar 

  27. Simpson EV, Ideker RE, Smith WM. An automatic activation detector for bipolar cardiac electrograms. IEEE Eng Med Biol 10th Ann Int Conf. 1988;1:113–114.

    Google Scholar 

  28. Pieper CF, Blue R, Pacifico A. Simultaneously collected monopolar and discrete bipolar ­electrograms: comparison of activation time detection algorithms. Pacing Clin Electrophysiol. 1993;16(3 pt 1):426–433.

    Article  PubMed  CAS  Google Scholar 

  29. Nademanee K, McKenzie J, Kosar E, et al. A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. J Am Coll Cardiol. 2004;43(11):2044–2053.

    Article  PubMed  Google Scholar 

  30. Nademanee K, Schwab MC, Kosar EM, et al. Clinical outcomes of catheter substrate ablation for high-risk patients with atrial fibrillation. J Am Coll Cardiol. 2008;51(8):843–849.

    Article  PubMed  Google Scholar 

  31. Calo L, De Ruvo E, Sciarra L, et al. Diagnostic accuracy of a new software for complex fractionated electrograms identification in patients with persistent and permanent atrial fibrillation. J Cardiovasc Electrophysiol. 2008;19(10):1024–1030.

    Article  PubMed  Google Scholar 

  32. Kremen V, Lhotska L, Macas M, et al. A new approach to automated assessment of fractionation of endocardial electrograms during atrial fibrillation. Physiol Meas. 2008;29(12):1371–1381.

    Article  PubMed  CAS  Google Scholar 

  33. Porter M, Spear W, Akar JG, et al. Prospective study of atrial fibrillation termination during ablation guided by automated detection of fractionated electrograms. J Cardiovasc Electrophysiol. 2008;19(6):613–620.

    Article  PubMed  Google Scholar 

  34. Scherr D, Dalal D, Cheema A, et al. Automated detection and characterization of complex fractionated atrial electrograms in human left atrium during atrial fibrillation. Heart Rhythm. 2007;4(8):1013–1020.

    Article  PubMed  Google Scholar 

  35. Yoshida K, Ulfarsson M, Tada H, et al. Complex electrograms within the coronary sinus: time- and frequency-domain characteristics, effects of antral pulmonary vein isolation, and relationship to clinical outcome in patients with paroxysmal and persistent atrial fibrillation. J Cardiovasc Electrophysiol. 2008;19(10):1017–1023.

    Article  PubMed  Google Scholar 

  36. Murgatroyd FD, Krahn AD, Klein GR, et al. Stimulation and electrophysiological monitoring. In: Handbook of Cardiac Electrophysiology. London: ReMEDICA; 2002:10–14.

    Google Scholar 

  37. Ideker RE, Smith WM, Blanchard SM, et al. The assumptions of isochronal cardiac mapping. Pacing Clin Electrophysiol. 1989;12(3):456–478.

    Article  PubMed  CAS  Google Scholar 

  38. Durrer D, Van L, Bueller J. Epicardial and intramural excitation in chronic myocardial infarction. Am Heart J. 1964;68:765–776.

    Article  PubMed  CAS  Google Scholar 

  39. Chow AWC, Schilling RJ, Davies DW, et al. Noncontact cardiac mapping. In: Cabo C, Rosenbaum DS, eds. Quantitative Cardiac Electrophysiology. New York: Marcel Dekker, Inc.; 2002:361–383.

    Chapter  Google Scholar 

  40. Taccardi B, Arisi G, Macchi E, et al. A new intracavitary probe for detecting the site of origin of ectopic ventricular beats during one cardiac cycle. Circulation. 1987;75(1):272–281.

    Article  PubMed  CAS  Google Scholar 

  41. Colli-Franzone P, Guerri L, Viganotti C, et al. Potential fields generated by oblique dipole layers modeling excitation wavefronts in the anisotropic myocardium. Comparison with potential fields elicited by paced dog hearts in a volume conductor. Circ Res. 1982;51(3):330–346.

    Article  PubMed  CAS  Google Scholar 

  42. Khoury DS, Rudy Y. A model study of volume conductor effects on endocardial and intracavitary potentials. Circ Res. 1992;71(3):511–525.

    Article  PubMed  CAS  Google Scholar 

  43. Beatty GE, Kagan J, Budd JR. Endocardial Therapeutics, Inc., assignee. Endocardial mapping system. US patent 5297549, 1994.

    Google Scholar 

  44. Ghanem RN, Jia P, Ramanathan C, et al. Noninvasive electrocardiographic imaging (ECGI): comparison to intraoperative mapping in patients. Heart Rhythm. 2005;2(4):339–354.

    Article  PubMed  Google Scholar 

  45. Ghosh S, Avari JN, Rhee EK, et al. Noninvasive electrocardiographic imaging (ECGI) of epicardial activation before and after catheter ablation of the accessory pathway in a patient with Ebstein anomaly. Heart Rhythm. 2008;5(6):857–860.

    Article  PubMed  Google Scholar 

  46. Intini A, Goldstein RN, Jia P, et al. Electrocardiographic imaging (ECGI), a novel diagnostic modality used for mapping of focal left ventricular tachycardia in a young athlete. Heart Rhythm. 2005;2(11):1250–1252.

    Article  PubMed  Google Scholar 

  47. Ng J, Goldberger JJ. Understanding and interpreting dominant frequency analysis of AF ­electrograms. J Cardiovasc Electrophysiol. 2007;18(6):680–685.

    Article  PubMed  Google Scholar 

  48. Ng J, Kadish AH, Goldberger JJ. Effect of electrogram characteristics on the relationship of dominant frequency to atrial activation rate in atrial fibrillation. Heart Rhythm. 2006;3(11):1295–1305.

    Article  PubMed  Google Scholar 

  49. Ng J, Kadish AH, Goldberger JJ. Technical considerations for dominant frequency analysis. J Cardiovasc Electrophysiol. 2007;18(7):757–764.

    Article  PubMed  Google Scholar 

  50. Everett TH, Kok LC, Vaughn RH, et al. Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy. IEEE Trans Biomed Eng. 2001; 48(9): 969–978.

    Article  PubMed  Google Scholar 

  51. Pachon MJ, Pachon ME, Lobo TJ, et al. A new treatment for atrial fibrillation based on spectral analysis to guide the catheter RF-ablation. Europace. 2004;6(6):590–601.

    Article  PubMed  Google Scholar 

  52. Ropella KM, Sahakian AV, Baerman JM, et al. Effects of procainamide on intra-atrial [corrected] electrograms during atrial fibrillation: implications [corrected] for detection algorithms. Circulation. 1988;77(5):1047–1054.

    Article  PubMed  CAS  Google Scholar 

  53. Lazar S, Dixit S, Callans DJ, et al. Effect of pulmonary vein isolation on the left-to-right atrial dominant frequency gradient in human atrial fibrillation. Heart Rhythm. 2006;3(8):889–895.

    Article  PubMed  Google Scholar 

  54. Platia EV, Brinker JA. Time course of transvenous pacemaker stimulation impedance, capture threshold, and electrogram amplitude. Pacing Clin Electrophysiol. 1986;9(5):620–625.

    Article  PubMed  CAS  Google Scholar 

  55. DeCaprio V, Hurzeler P, Furman S. A comparison of unipolar and bipolar electrograms for cardiac pacemaker sensing. Circulation. 1977;56(5):750–755.

    Article  PubMed  CAS  Google Scholar 

  56. Goldschlager N, Epstein A, Friedman P, et al. Environmental and drug effects on patients with pacemakers and implantable cardioverter/defibrillators: a practical guide to patient treatment. Arch Intern Med. 2001;161(5):649–655.

    Article  PubMed  CAS  Google Scholar 

  57. Rajawat YS, Patel VV, Gerstenfeld EP, et al. Advantages and pitfalls of combining device-based and pharmacologic therapies for the treatment of ventricular arrhythmias: observations from a tertiary referral center. Pacing Clin Electrophysiol. 2004;27(12):1670–1681.

    Article  PubMed  Google Scholar 

  58. Schuchert A, Kuck KH, Bleifeld W. Stability of pacing threshold, impedance, and R wave amplitude at rest and during exercise. Pacing Clin Electrophysiol. 1990;13(12 pt 1):1602–1608.

    Article  PubMed  CAS  Google Scholar 

  59. Shandling AH, Florio J, Castellanet MJ, et al. Physical determinants of the endocardial P wave. Pacing Clin Electrophysiol. 1990;13(12 pt 1):1585–1589.

    Article  PubMed  CAS  Google Scholar 

  60. Rosenheck S, Schmaltz S, Kadish AH, et al. Effect of rate augmentation and isoproterenol on the amplitude of atrial and ventricular electrograms. Am J Cardiol. 1990;66(1):101–102.

    Article  PubMed  CAS  Google Scholar 

  61. Varriale P, Chryssos BE. Atrial sensing performance of the single-lead VDD pacemaker ­during exercise. J Am Coll Cardiol. 1993;22(7):1854–1857.

    Article  PubMed  CAS  Google Scholar 

  62. Chan CC, Lau CP, Leung SK, et al. Comparative evaluation of bipolar atrial electrogram amplitude during everyday activities: atrial active fixation versus two types of single pass VDD/R leads. Pacing Clin Electrophysiol. 1994;17(11 pt 2):1873–1877.

    Article  PubMed  CAS  Google Scholar 

  63. Furman S, Hurzeler P, De Caprio V. Cardiac pacing and pacemaker. III. Sensing the cardiac electrogram. Am Heart J. 1977;93(6):794–801.

    Article  PubMed  CAS  Google Scholar 

  64. Pinski SL. Electromagnetic interference and implantable devices. In: Ellenbogen KA, Kay GN, Lau CP, et al., eds. Clinical Cardiac Pacing, Defibrillation, and Resynchronization Therapy. 3rd ed. Philadelphia, PA: Saunders; 2007:1149–1176.

    Chapter  Google Scholar 

  65. Ellenbogen KA, Kay GN, Lau CP, et al., eds. Clinical Cardiac Pacing, Defibrillation, and Resynchronization Therapy. 3rd ed. Philadelphia, PA: Saunders; 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru B. Chicos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Chicos, A.B., Kadish, A.H. (2010). Intracardiac Electrograms. In: Goldberger, J., Ng, J. (eds) Practical Signal and Image Processing in Clinical Cardiology. Springer, London. https://doi.org/10.1007/978-1-84882-515-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-515-4_19

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-514-7

  • Online ISBN: 978-1-84882-515-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics