Skip to main content

Optimization of Metal Forming and Machining Processes

  • Chapter
Modeling of Metal Forming and Machining Processes

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

The aim of every engineer is to carry out optimization. We keep on optimizing many things even without using any optimization techniques. One can find endless number of problems in metal forming and machining where optimization can play a major role. The task of the optimization can be divided into three main subtasks:

  1. (1)

    Formulation of the statement of the optimization problem in terms of the objective function and constraints.

  2. (2)

    Developing the mathematical model for obtaining the objective function and constraints as a function of the design (decision) variables whose value one needs to determine in the process of obtaining the optimal solution.

  3. (3)

    Solving the optimization problem using a suitable optimization algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10.5 References

  1. Rao, S.S. (1996), Engineering Optimization-Theory and Practice, John Wiley and Sons Inc. and New Age International (P) Ltd. Publishers, New Delhi.

    Google Scholar 

  2. Arora, J.S. (1989), Introduction to Optimum Design, McGraw-Hill, New York.

    Google Scholar 

  3. Deb, K. (1998), Optimization for Engineering Design: Algorithms and Examples, Prentice-Hall of India, New Delhi.

    Google Scholar 

  4. Avitzur, B. (1962), Pass reduction schedule for optimum production of a hot strip mill, Iron Steel Eng., Dec., pp. 104–114.

    Google Scholar 

  5. Brayant, G.F. and Spooner, P.D. (1973), On-line adoption of tandem mill schedules, Automation of Tandem Mills, Brayant G.F., ed., The Iron and Steel Institute, London.

    Google Scholar 

  6. Brayant, G.F., Halliday, J.M. and Spooner, P.D. (1973), Optimal scheduling of a tandem cold rolling mill, Brayant G.F., ed., The Iron and Steel Institute, London.

    Google Scholar 

  7. Dixit, U.S. and Dixit, P.M. (2000), Application of fuzzy set theory in the scheduling of a tandem cold-rolling mill, Transactions of ASME, Journal of Manufacturing Science and Engineering, Vol. 122, pp. 494–500.

    Article  Google Scholar 

  8. Wang, D.D., Tieu, A.K., de Boer, F.G., Ma, B. and Yuen, W.Y.D. Yuen, (2000), Towards a heuristic optimum design of rolling schedules for tandem cold rolling mills, Engineering Applications of Artificial Intelligence, Vol. 13, pp. 397–406.

    Article  Google Scholar 

  9. Sekulic, M. R. and Alexander, J. M. (1963), A theoretical discussion of the automatic control of multi-stand tandem cold rolling mills, International Journal of Mechanical Sciences, Vol. 5, pp. 149–163.

    Article  Google Scholar 

  10. Avitzur, B., Van Tyne, C.J. and Turczyn, S. (1988), The prevention of central burst during rolling, Transactions of ASME, Journal of Engineering for Industry, Vol. 110, pp. 173–178.

    Google Scholar 

  11. Zhu, Y.D. and Avitzur, B. (1988), Criterion for the prevention of split ends, Transactions of ASME Journal of Engineering for Industry, Vol. 110, pp. 162–172.

    Google Scholar 

  12. Roberts, W.L. (1978), Cold Rolling of Steel, Marcel Dekker, New York.

    Google Scholar 

  13. Antonsson, E.K. and Otto, K.N. (1995), Imprecision in engineering design, Transactions of ASME Journal of Mechanical Design, Vol. 117(B), pp. 25–32.

    Article  Google Scholar 

  14. Joun, M.S. and Hwang, S.M. (1993), Pass schedule optimal design in multi-pass extrusion and drawing by finite element method, International Journal of Machine Tools & Manufacture, Vol. 33, pp. 713–724.

    Article  Google Scholar 

  15. Celano, G., Fichera, S., Fratini, L. and Micari (2001), The application of AI techniques in the optimal design of multi-pass drawing processes, Journal of Materials Processing Technology, Vol. 113, pp. 680–685.

    Article  Google Scholar 

  16. Balaji, P.A., Sundararajan, T. and Lal, G.K. (1991), Viscoplastic deformation analysis and extrusion die design by FEM, Transactions of ASME, Journal of Applied Mechanics, Vol. 58, pp. 644–650.

    Article  Google Scholar 

  17. Reddy, N.V., Dixit, P.M. and Lal, G.K. (1997), Die design for axisymmetric hot extrusion, International Journal of Machine Tools & Manufacture, Vol. 37, pp. 1635–1650.

    Article  Google Scholar 

  18. Lee, S.K., Ko, D.C. and Kim, B.M. (2000), Optimal die profile design for uniform microstructure in hot extrusion product, International Journal of Machine Tools & Manufacture., Vol. 40, pp. 1457–1478.

    Article  Google Scholar 

  19. Yada, H. and Senuma, T. (1986), Resistance to hot deformation of steel, Journal of JSTP, Vol. 27, pp. 34–44.

    Google Scholar 

  20. Lin, Z., Juchen, X., Xinyun, W., Guoan, H. (2003), Optimization of die profile for improving die life in the hot extrusion process, Journal of Materials Processing Technology, Vol. 142, pp. 659–664.

    Article  Google Scholar 

  21. Ulysse, P. (2002), Extrusion die design for flow balance using FE and optimization methods, International Journal of Mechanical Sciences, Vol. 44, pp. 319–341.

    Article  MATH  Google Scholar 

  22. Yan, H., Xia, J. (2006), An approach to the optimal design of technological parameters in the profile extrusion process, Science and technology of Advanced materials, Vol. 7, pp. 127–131.

    Article  Google Scholar 

  23. Kleinermann, J. and Ponthot, J. (2003), Parameter identification and shape/process optimization in metal forming simulation, Journal of Materials Processing Technology., Vol. 139, pp. 521–526.

    Article  Google Scholar 

  24. Zhao, G., Ma, X., Zhao, X., Grandhi, R.V. (2004), Studies on optimization of metal forming processes using sensitivity analysis methods, Journal of Materials Processing Technology, Vol. 147, pp. 217–228.

    Article  Google Scholar 

  25. Antonio, C.C., Castro, C.F., Sousa, L.C. (2004), Optimization of metal forming processes, Computers and Structures, Vol. 82, pp. 1425–1433.

    Article  Google Scholar 

  26. Khoury, I., Giraud-Moreau, L., Lafon, P., Labergere, C. (2006), Towards an optimization of forging processes using geometric parameters, Journal of Materials Processing Technology, Vol. 177, pp. 224–227.

    Article  Google Scholar 

  27. Chengzhi, S., Guanlong, C., Zhongqin, L. (2005), Determining the optimum variable blank-holder forces using adaptive response surface methodology (ARSM), International Journal of Advanced Manufacturing Technology, Vol. 26, pp. 23–29.

    Article  Google Scholar 

  28. Liu, Q., Liu, W., Ruan, F., Qiu, H. (2007), Parameters’ automated optimization in sheet metal forming processes, Journal of Materials Processing Technology, Vol. 187–188, pp. 159–163.

    Article  Google Scholar 

  29. Tang, B., Sun, J., Zhao, Z., Chen, J., Ruan, X. (2006), Optimization of drawbead design in sheet forming using one step finite element method coupled with response surface methodology, International Journal of Advanced Manufacturing Technology, Vol. 31, pp. 225–234.

    Article  Google Scholar 

  30. Hu, J., Peng, Y., Li, D., Yin, J. (2007), Robust optimization based on knowledge discovery from metal forming simulation, Journal of Materials Processing Technology, Vol. 187–188, pp. 698–701.

    Article  Google Scholar 

  31. Jansson, T., Nilsson, L. (2006), Optimizing sheet metal forming processes-using a design hierarchy and response surface methodology, Journal of Materials Processing Technology, Vol. 178, pp. 218–233.

    Article  Google Scholar 

  32. Sattari, H., Sedaghati, R., Ganeshan, R. (2006), Analysis and design optimization of deep drawing process Part II: Optimization, Journal of Materials Processing Technology, Vol. 184, pp. 84–92.

    Article  Google Scholar 

  33. Shi, X., Chen, J., Peng, Y., Ruan, X. (2004), A new approach of die shape optimization for sheet metal forming processes, Journal of Materials Processing Technolog., Vol. 152, pp. 35–42.

    Article  Google Scholar 

  34. Bate, P. S., Ridley, N., Zhang, B., Dover, S. (2006), Optimization of the superplastic forming of aluminium alloys, Journal of Materials Processing Technology, Vol. 177, pp. 91–94.

    Article  Google Scholar 

  35. Parsa, M.H., Pournia, P. (2007), Optimization of initial blank shape predicted based on inverse finite element method, Finite Elements in Analysis and Design, Vol. 43, pp. 218–233.

    Article  Google Scholar 

  36. Sosnowski, W., Marczewska, I., Marczewski, A. (2002), Sensitivity based optimization of sheet metal forming tools, Journal of Materials Processing Technology, Vol. 124, pp. 319–328.

    Article  Google Scholar 

  37. Gantar, G., Pepelnjak, T., Kuzman, K. (2002), Optimization of sheet metal forming processes by the use of numerical simulations, Journal of Materials Processing Technology, Vol. 130–131, pp. 54–59.

    Article  Google Scholar 

  38. Gilbert, W.W. (1950), Economics of machining. In Machining Theory and Practice. American Society of Metals, 465–485.

    Google Scholar 

  39. Ermer, D.S. (1971), Optimization of constrained machining economics problem by geometric programming, Transaction of the ASME, Journal of Engineering for Industry, Vol. 93, pp. 1067–1072.

    Google Scholar 

  40. Petropoulos, P.G. (1973), Optimal selection of machining rate variables by geometric programming, International Journal of Production Research, Vol.11, pp. 305–314.

    Article  Google Scholar 

  41. Lambert, P.K. and Walvekar, A.G. (1978), Optimization of multi-pass machining operations, International Journal of Production Research, Vol. 16, pp. 247–259.

    Article  Google Scholar 

  42. Shin, Y.C. and Joo, Y.S. (1992), Optimization of machining condition with practical constraints, International Journal of Production Research, Vol. 30, pp. 2907–2919.

    Article  Google Scholar 

  43. Gupta, R., Batra, J.L. and Lal, G.K. (1995), Determination of optimal subdivision of depth of cut in multipass turning with constraints. International Journal of Production Research, Vol. 33, pp. 2555–2565.

    Article  MATH  Google Scholar 

  44. Al-Ahmari, A.M.A. (2001), Mathematical model for determining machining parameters in multipass turning, International Journal of Production Research, Vol. 39, pp. 3367–3376.

    Article  Google Scholar 

  45. Kee, P.K. (1994), Development of computer-aided machining optimization for multipass rough turning operations, International Journal of Production Economics, Vol. 37, pp. 215–227.

    Article  Google Scholar 

  46. Yeo, S.H. (1995), A multipass optimization strategy for CNC lathe operations, International Journal of Production Economics, Vol. 40, pp. 209–218.

    Article  Google Scholar 

  47. Yang, W.H. and Tarng, Y.S. (1998), Design optimization of cutting parameters for turning operation based on the Taguchi method, Journal of Material Processing Technology, Vol. 84, pp. 122–129.

    Article  Google Scholar 

  48. Lee, B.Y. and Tarng, Y.S. (2000), Cutting parameter selection for maximizing production rate or minimizing production cost in multistage turning operations, Journal of Material Processing Technology, Vol. 105, pp. 61–66.

    Article  Google Scholar 

  49. Chen, M.C. and Tsai, D.M. (1996), A simulated annealing approach for optimization of multipass turning operation, International Journal of Production Research, Vol. 34, pp. 2803–2825.

    Article  MATH  Google Scholar 

  50. Baykasoğlu, A. and Dereli T. (2002), Novel algorithm approach to generate the ‘number of passes’ and ‘depth of cuts’ for the optimization routines of multipass machining, International Journal of Production Research, Vol. 40, pp. 1549–1565.

    Article  Google Scholar 

  51. Alberti, N. and Perrone, G. (1999), Multipass machining operations by using fuzzy possibilistic programming and genetic algorithm, Proceedings of the Institution of Mechanical Engineers, Journal of Engineering Manufacture, Vol. 213, pp. 261–273.

    Article  Google Scholar 

  52. Onwubolu, G.C. and Kumalo, T. (2001), Optimization of multipass turning operations with genetic algorithm, International Journal of Production Research, Vol. 39, pp. 3727–3745.

    Article  MATH  Google Scholar 

  53. Chen, M.C. and Chen, K.Y. (2003), Optimization of multi-pass turning operations with genetic algorithms: a note, International Journal of Production Research, Vol. 41, pp. 3385–3388.

    Article  Google Scholar 

  54. Wang, X., Da, Z.J., Balaji, A.K. and Jawahir, I.S. (2002), Performance-based optimal selection of cutting conditions and cutting tools in multi-pass turning operations using genetic algorithms, International Journal of Production Research, Vol. 40, pp. 2053–2065.

    Article  MATH  Google Scholar 

  55. Saravanan, R., Asokan, P. and Vijayakumar, K. (2003), Machining parameters optimization for turning cylindrical stock into a continuous finished profile using genetic algorithm (GA) and simulated annealing (SA), International Journal of Advanced Manufacturing Technology, Vol. 21, pp. 1–9.

    Article  Google Scholar 

  56. Wang, X. and Jawahir, I.S. (2005), Optimization of multi-pass turning operations using genetic algorithms for the selection of cutting conditions and cutting tools with tool wear effect, International Journal of Production Research, Vol. 43, pp. 3543–3559.

    Article  MATH  Google Scholar 

  57. Satishkumar, S., Asokan, P. and Kumanan, S. (2006), Optimization of depth of cut in multi-pass turning using nontraditional optimization techniques. International Journal of Advanced Manufacturing Technology, Vol. 29, Vol. 230–238.

    Article  Google Scholar 

  58. Abburi, N.R. and Dixit, U.S. (2007), Multi-objective optimization of multipass turning processes, International Journal of Advanced Manufacturing Technology, Vol. 32, pp. 902–910.

    Article  Google Scholar 

  59. Armarego, E.J.A, Smith, A.J.R. and Wang, J. (1993), Constrained optimization strategies and CAM software for single pass peripheral milling, International Journal of Production Research, Vol. 31, pp. 2139–2160.

    Article  Google Scholar 

  60. Armarego, E.J.A., Smith, A.J.R. and Wang, J. (1994), Computer-aided constrained optimization analyses and strategies for multi-pass helical tooth milling operation, Annals of the CIRP, Vol. 43, pp. 437–442.

    Article  Google Scholar 

  61. Tolouei-Rad, M. and Bhidendi I.M. (1997), On the optimization of machining parameters for milling operations, International Journal of Machine Tools & Manufacture, Vol. 37, pp. 1–16.

    Article  Google Scholar 

  62. Sönmez, A.İ, Baykasoĝlu, A., Dereli, T. and Filiz, İ.H. (1999), Dynamic optimization of multipass milling operation via geometric programming, International Journal of Machine Tools & Manufacture, Vol. 39, pp. 297–320.

    Article  Google Scholar 

  63. Tandon, V., El-Mounayri, H. and Kishawy, H. (2002), NC end milling optimization using evolutionary computation, International Journal of Machine Tools & Manufacture, Vol. 42, pp. 595–605.

    Article  Google Scholar 

  64. Wang, Z. G., Wong, Y. S. and Rahman, M. (2004), Optimization of multi-pass milling using genetic algorithm and genetic simulated annealing, International Journal of Advanced Manufacturing Technology, Vol. 24, pp. 727–732.

    Article  Google Scholar 

  65. Reddy, N. S. K. and Rao, P.V. (2005), Selection of optimum tool geometry and cutting conditions using a surface roughness prediction model for end milling, International Journal of Advanced Manufacturing Technology, Vol. 26, pp. 1202–1210.

    Article  Google Scholar 

  66. Reddy, N. S. K., Rao, P.V. (2006), Selection of an optimal parametric combination for achieving a better surface finish in dry milling using genetic algorithms, International Journal of Advanced Manufacturing Technology, Vol. 28, pp. 463–473.

    Article  Google Scholar 

  67. Ozcelik, B., Oktem, H. and Kurtaran, H. (2005), Optimum surface roughness in end milling Inconel 718 by coupling neural network model and genetic algorithm, International Journal of Advanced Manufacturing Technology, Vol. 27, pp. 234–241.

    Article  Google Scholar 

  68. Palanisamy, I. Rajendran and S. Shanmugasundaram (2007), Optimization of machining parameters using genetic algorithm and experimental validation for end-milling operations, International Journal of Advanced Manufacturing Technology, Vol. 32, pp. 644–655.

    Article  Google Scholar 

  69. Wang, Z.G., Wong, Y.S., Rahman, M. and Sun, J. (2006), Multi-objective optimization of high-speed milling with parallel genetic simulated annealing, International Journal of Advanced Manufacturing Technology, Vol. 31, pp. 209–218.

    Article  Google Scholar 

  70. Iqbal, A., He, N., Li, L. and Dar, N.U. (2007), A fuzzy expert system for optimizing parameters and predicting performance measures in hard-milling process, Expert Systems with Applications, Volume 32, pp. 1020–1027.

    Article  Google Scholar 

  71. Kiliç, S.E. (1985), Use of one-dimensional search method for the optimization of turning operations, Modeling, Simulation and Control B, Vol. 14, pp. 39–63.

    Google Scholar 

  72. Ojha, D.K., and Dixit, U.S. (2005), Economic and reliable tool life estimation procedure for turning, International Journal of Advanced Manufacturing Technology, Vol. 26, pp. 726–732.

    Article  Google Scholar 

  73. Armarego, E.J.A., Jawahir I.S., Osafaviev, V.A. and Patri, V.K. (1996), Modeling of machining operations. In working paper STC ‘C’ working group. Hallway Publishers, Paris, France.

    Google Scholar 

  74. Stephenson, D.A. and Agapiou, J.S. (1997), Metal Cutting Theory and Practice, Dekker, New York.

    Google Scholar 

  75. Hegginbotham, W.B. and Pandey, P.C. (1967), A variable rate machining test for tool life evaluation, Proc. 8-th International MTDR Conference, Manchester, September 1967.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2008). Optimization of Metal Forming and Machining Processes. In: Modeling of Metal Forming and Machining Processes. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-84800-189-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-189-3_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-188-6

  • Online ISBN: 978-1-84800-189-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics