Skip to main content

Congenital Long QT Syndrome

  • Chapter
Electrical Diseases of the Heart

Abstract

Once considered an extremely rare yet lethal arrhythmogenic peculiarity, congenital long QT syndrome (LQTS) is understood today as a primary cardiac arrhythmia syndrome (“cardiac channelopathy”) that is both far more common and, overall, much less lethal than previously recognized. Clinically, LQTS is often characterized by prolongation of the heart rate corrected QT interval (QTc) on a 12-lead surface electrocardiogram (ECG) and is associated with syncope, seizures, and sudden cardiac death due to ventricular arrhythmias (Torsade des pointes, TdP) usually following a precipitating event such as exertion, extreme emotion, or auditory stimulation. The molecular breakthroughs of the 1990s, led in large measure by the research laboratories of Drs. Mark Keating and Jeffrey Towbin in conjunction with LQTS registries containing meticulously phenotyped patients directed by Drs. Arthur Moss and Peter Schwartz, revealed the fundamental molecular underpinnings of LQTS— namely, defective cardiac channels.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moss AJ, Schwartz PJ. 25th anniversary of the International Long-QT Syndrome Registry: An ongoing quest to uncover the secrets of long-QT syndrome. Circulation 2005;111(9):1199–1201.

    Article  PubMed  Google Scholar 

  2. Jervell A, Lange-Nielsen F. Congenital deafmutism, functional heart disease with prolongation of the QT interval, and sudden death. Am Heart J 1957;54(1):59–68.

    Article  PubMed  CAS  Google Scholar 

  3. Romano C GG, Pongiglione R. Aritmie cardiache rare dell’eta’pediatrica. II. Accessi sincopali per fibrillazione ventricolare parossistica. Clin Peditr (Bologna) 1963;45:656–683.

    CAS  Google Scholar 

  4. Ward OC. A new familial cardiac syndrome in children. J Irish Med Assoc 1964;54:103–106.

    CAS  Google Scholar 

  5. Ackerman MJ. The long QT syndrome: Ion channel diseases of the heart. Mayo Clin Proc 1998;73(3): 250–269.

    PubMed  CAS  Google Scholar 

  6. Vincent GM. The molecular genetics of the long QT syndrome: Genes causing fainting and sudden death. Annu Rev Med 1998;49:263–274.

    Article  PubMed  CAS  Google Scholar 

  7. Crotti LS-BM, Pedrazzini M, Ferrandi C, Insolia R, Goulene K, Salice P, Mannarino S, Schwartz PJ. Prevalence of the long QT syndrome. Circulation 2005;112(Suppl. II):660.

    Google Scholar 

  8. Tester DJ, Ackerman MJ. Postmortem long QT syndrome genetic testing for sudden unexplained death in the young. J Am Coll Cardiol 2007;16; 49(2):240–246.

    Article  Google Scholar 

  9. Goldenberg I, Moss AJ, Zareba W, et al. Clinical course and risk stratification of patients affected with the Jervell and Lange-Nielsen syndrome. J Cardiovasc Electrophysiol 2006;17:1 161–1168.

    Google Scholar 

  10. Moss AJ. Long QT syndromes. Curr Treat Options Cardiovasc Med 2000;2(4):317–322.

    Article  PubMed  Google Scholar 

  11. Schwartz PJ. Clinical applicability of molecular biology: The case of the long QT syndrome. Curr Control Trials Cardiovasc Med 2000;1(2):88–91.

    Article  PubMed  CAS  Google Scholar 

  12. Moss AJ, Schwartz PJ, Crampton RS, et al. The long QT syndrome. Prospective longitudinal study of 328 families. Circulation 1991;84(3):1136–1144.

    PubMed  CAS  Google Scholar 

  13. Hobbs JB, Peterson DR, Moss AJ, et al. Risk of aborted cardiac arrest or sudden cardiac death during adolescence in the long-QT syndrome. JAMA 2006;296(10):1249–1254.

    Article  PubMed  CAS  Google Scholar 

  14. Lehmann MH, Timothy KW, Frankovich D, et al. Age-gender influence on the rate-corrected QT interval and the QT-heart rate relation in families with genotypically characterized long QT syndrome. J Am Coll Cardiol 1997;29(1):93–99.

    Article  PubMed  CAS  Google Scholar 

  15. Locati EH, Zareba W, Moss AJ, et al. Age-and sex-related differences in clinical manifestations in patients with congenital long-QT syndrome: Findings from the International LQTS Registry. Circulation 1998;97(22):2237–2244.

    PubMed  CAS  Google Scholar 

  16. Rashba EJ, Zareba W, Moss AJ, et al. Influence of pregnancy on the risk for cardiac events in patients with hereditary long QT syndrome. LQTS Investigators. Circulation 1998;97(5):451–456.

    PubMed  CAS  Google Scholar 

  17. Schwartz PJ, Priori SG, Spazzolini C, et al. Genotype-phenotype correlation in the long-QT syndrome: Gene-specific triggers for life-threatening arrhythmias. Circulation 2001;103:89–95.

    PubMed  CAS  Google Scholar 

  18. Moss AJ, Robinson JL, Gessman L, et al. Comparison of clinical and genetic variables of cardiac events associated with loud noise versus swimming among subjects with the long QT syndrome. Am J Cardiol 1999;84(8):876–879.

    Article  PubMed  CAS  Google Scholar 

  19. Ackerman MJ, Tester DJ, Porter CJ. Swimming, a gene-specific arrhythmogenic trigger for inherited long QT syndrome. Mayo Clin Proc 1999;74(11): 1088–1094.

    PubMed  CAS  Google Scholar 

  20. Moss AJ, Zareba W, Benhorin J, et al. ECG T-wave patterns in genetically distinct forms of the hereditary long QT syndrome. Circulation 1995;92(10): 2929–2934.

    PubMed  CAS  Google Scholar 

  21. Zhang L, Timothy KW, Vincent GM, et al. Spectrum of ST-T-wave patterns and repolarization parameters in congenital long-QT syndrome: ECG findings identify genotypes. Circulation 2000; 102(23):2849–2855.

    PubMed  CAS  Google Scholar 

  22. Wilde AA, Jongbloed RJ, Doevendans PA, et al. Auditory stimuli as a trigger for arrhythmic events differentiate HERG-related (LQTS2) patients from KVLQT1-related patients (LQTS1).J Am Coll Cardiol 1999;33(2):327–332.

    Article  PubMed  CAS  Google Scholar 

  23. Khositseth A, Tester DJ, Will ML, Bell CM, Ackerman MJ. Identification of a common genetic substrate underlying postpartum cardiac events in congenital long QT syndrome. Heart Rhythm 2004; 1:60–64.

    Article  PubMed  Google Scholar 

  24. Heradien MJ, Goosen A, Crotti L, et al. Does pregnancy increase cardiac risk for LQT1 patients with the KCNQ1-A341V mutation? J Am Coll Cardiol 2006;48:1410–1415.

    Article  PubMed  CAS  Google Scholar 

  25. Lehmann MH, Suzuki F, Fromm BS, et al. T wave “humps” as a potential electrocardiographic marker of the long QT syndrome. J Am Coll Cardiol 1994;24(3):746–754.

    PubMed  CAS  Google Scholar 

  26. Vincent GM, Timothy KW, Leppert M, Keating M. The spectrum of symptoms and QT intervals in carriers of the gene for the long-QT syndrome. N Engl J Med 1992;327(12):846–852.

    PubMed  CAS  Google Scholar 

  27. Dumaine R, Wang Q, Keating MT, et al. Multiple mechanisms of Na+ channel-linked long-QT syndrome. Circ Res 1996;78(5):916–924.

    PubMed  CAS  Google Scholar 

  28. Zareba W, Moss AJ, Schwartz PJ, et al. Influence of genotype on the clinical course of the long-QT syndrome. International Long-QT Syndrome Registry Research Group. N Engl J Med 1998;339(14):960–965.

    Article  PubMed  CAS  Google Scholar 

  29. Schwartz PJ. Idiopathic long QT syndrome: Progress and questions. Am Heart J 1985;109(2): 399–411.

    Article  PubMed  CAS  Google Scholar 

  30. Schwartz PJ, Moss AJ, Vincent GM, Crampton RS. Diagnostic criteria for the long QT syndrome. An update. Circulation 1993;88(2):782–784.

    PubMed  CAS  Google Scholar 

  31. Schwartz PJ. The congenital long QT syndromes from genotype to phenotype: Clinical implications. J Intern Med 2006;259(1):39–47.

    Article  PubMed  CAS  Google Scholar 

  32. Bazett HC. An analysis of the time-relations of electrocardiograms. Heart 1920;7:353–370.

    Google Scholar 

  33. Garson A Jr, Dick M 2nd, Fournier A, et al. The long QT syndrome in children. An international study of 287 patients. Circulation 1993;87(6):1866–1872.

    PubMed  Google Scholar 

  34. Garson A Jr, Kertesz NJ, Towbin JA. Improved electrocardiographic identification of the long QT syndrome. J Am Coll Cardiol 2001;37(Suppl. A): 467A.

    Google Scholar 

  35. Allan WC, Timothy K, Vincent GM, Palomaki GE, Neveux LM, Haddow JE. Long QT syndrome in children: The value of rate corrected QT interval and DNA analysis as screening tests in the general population. J Med Screen 2001;8(4):173–177.

    Article  PubMed  CAS  Google Scholar 

  36. Viskin S, Rosovski U, Sands AJ, et al. Inaccurate electrocardiographic interpretation of long QT: The majority of physicians cannot recognize a long QT when they see one. [See comment.] Heart Rhythm 2005;2(6):569–574.

    Article  PubMed  Google Scholar 

  37. Moss AJ, Schwartz PJ, Crampton RS, Locati E, Carleen E. The long QT syndrome: A prospective international study. Circulation 1985;71(1):17–21.

    PubMed  CAS  Google Scholar 

  38. Tester DJ, Will ML, Haglund CM, Ackerman MJ. Effect of clinical phenotype on yield of long QT syndrome genetic testing. J Am Coll Cardiol 2006;47(4):764–768.

    Article  PubMed  Google Scholar 

  39. Vincent GM, Timothy K, Fox J, Zhang L. The inherited long QT syndrome: From ion channel to bedside. Cardiol Rev 1999;7(1):44–55.

    Article  PubMed  CAS  Google Scholar 

  40. Lupoglazoff JM, Denjoy I, Berthet M,et al. Notched T waves on Holter recordings enhance detection of patients with LQt2 (HERG) mutations. Circulation 2001;103(8):1095–1101.

    PubMed  CAS  Google Scholar 

  41. Khositseth A, Hejlik J, Shen WK, Ackerman MJ. Epinephrine-induced T-wave notching in congenital long QT syndrome. Heart Rhythm 2005;2: 141–146.

    Article  PubMed  Google Scholar 

  42. Schwartz PJ, Malliani A. Electrical alternation of the T-wave: Clinical and experimental evidence of its relationship with the sympathetic nervous system and with the long Q-T syndrome. Am Heart J 1975;89(1):45–50.

    Article  PubMed  CAS  Google Scholar 

  43. Zareba W, Moss AJ, Le Cessie S, Hall WJ. T wave alternans in idiopathic long QT syndrome. J Am Coll Cardiol 1994;23(7):1541–1546.

    PubMed  CAS  Google Scholar 

  44. Napolitano C, Priori SG, Schwartz PJ. Significance of QT dispersion in the long QT syndrome. Prog Cardiovasc Dis 2000;42(5):345–350.

    Article  PubMed  CAS  Google Scholar 

  45. Day CP, McComb JM, Campbell RW. QT dispersion: An indication of arrhythmia risk in patients with long QT intervals. Br Heart J 1990;63(6):342–344.

    Article  PubMed  CAS  Google Scholar 

  46. Priori SG, Napolitano C, Diehl L, Schwartz PJ. Dispersion of the QT interval. A marker of therapeutic efficacy in the idiopathic long QT syndrome. Circulation 1994;89(4):1681–1689.

    PubMed  CAS  Google Scholar 

  47. Moennig G, Schulze-Bahr E, Wedekind H, et al. Clinical value of electrocardiographic parameters in genotyped individuals with familial long QT syndrome. Pacing Clin Electrophysiol 2001;24(4Pt. 1):406–415.

    Article  PubMed  CAS  Google Scholar 

  48. Vincent GM, Jaiswal D, Timothy KW. Effects of exercise on heart rate, QT, QTc and QT/QS2 in the Romano-Ward inherited long QT syndrome. Am J Cardiol 1991;68(5):498–503.

    Article  PubMed  CAS  Google Scholar 

  49. Swan H, Toivonen L, Viitasalo M. Rate adaptation of QT intervals during and after exercise in children with congenital long QT syndrome. Eur Heart J 1998;19(3):508–513.

    Article  PubMed  CAS  Google Scholar 

  50. Schwartz PJ, Priori SG, Locati EH, et al. Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. Implications for gene-specific therapy. Circulation 1995;92(12):3381–3386.

    PubMed  CAS  Google Scholar 

  51. Swan H, Viitasalo M, Piippo K, Laitinen P, Kontula K, Toivonen L. Sinus node function and ventricular repolarization during exercise stress test in long QT syndrome patients with KvLQT1 and HERG potassium channel defects. J Am Coll Cardiol 1999;34(3):823–829.

    Article  PubMed  CAS  Google Scholar 

  52. Ackerman MJ, Khositseth A,T ester, DJ, Hejlik J, Shen WK, Porter CJ. Epinephrine-induced QT interval prolongation: A gene-specific paradoxical response in congenital long QT syndrome. Mayo Clin Proc 2002;77(5):413–421.

    PubMed  CAS  Google Scholar 

  53. Shimizu W, Noda T, Takaki H, et al. Epinephrine unmasks latent mutation carriers with LQT1 form of congenital long-QT syndrome. J Am Coll Cardiol 2003;41(4):633–642.

    Article  PubMed  CAS  Google Scholar 

  54. Vyas H, Hejlik J, Ackerman MJ. Epinephrine QT stress testing in the evaluation of congenital long-QT syndrome: Diagnostic accuracy of the paradoxical QT response. Circulation 2006;113(11): 1385–1392.

    Article  PubMed  CAS  Google Scholar 

  55. Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 1995;80(5):795–803.

    Article  PubMed  CAS  Google Scholar 

  56. Wang Q, Shen J, Splawski I, et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 1995;80(5):805–811.

    Article  PubMed  CAS  Google Scholar 

  57. Tester DJ, Will ML, Haglund CM, Ackerman MJ. Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm 2005; 2:507–517.

    Article  PubMed  Google Scholar 

  58. Napolitano C, Priori SG, Schwartz PJ, etal. Genetic testing in the long QT syndrome: Development and validation of an efficient approach to genotyping in clinical practice. [See comment.] JAMA 2005;294(23):2975–2980.

    Article  PubMed  CAS  Google Scholar 

  59. Splawski I, Shen J, Timothy KW, et al. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 2000;102(10):1178–1185.

    PubMed  CAS  Google Scholar 

  60. Westenskow P, Splawski I, Timothy KW, Keating MT, Sanguinetti MC. Compound mutations: A common cause of severe long-QT syndrome. Circulation 2004; 109:1834–1841.

    Article  PubMed  Google Scholar 

  61. Ackerman MJ, Tester DJ, Jones G, Will MK, Burrow CR, Curran M. Ethnic differences in cardiac potassium channel variants: Implications for genetic susceptibility to sudden cardiac death and genetic testing for congenital long QT syndrome. Mayo Clinic Proc 2003;78:1479–1487.

    CAS  Google Scholar 

  62. Ackerman MJ, Splawski I, Makielski JC, et al. Spectrum and prevalence of cardiac sodium channel variants among black, white, Asian, and Hispanic individuals: Implications for arrhythmogenic susceptibility and Brugada/long QT syndrome genetic testing. Heart Rhythm 2004; 1:600–607.

    Article  PubMed  Google Scholar 

  63. Priori SG, Aliot E, Blomstrom-Lundqvist C, et al. Task Force on Sudden Cardiac Death of the European Society of Cardiology. Eur Heart J 2001;22(16): 1374–1450.

    Article  PubMed  CAS  Google Scholar 

  64. Priori SG, Schwartz PJ, Napolitano C, et al. Risk stratification in the long-QT syndrome. N Engl J Med 2003;348:1866–1874.

    Article  PubMed  Google Scholar 

  65. Schwartz PJ, Spazzolini C, Crotti L, et al. The Jervell and Lange-Nielsen syndrome: Natural history, molecular basis, and clinical outcome. Circulation 2006;113(6):783–790.

    Article  PubMed  Google Scholar 

  66. Marks ML, Trippel DL, Keating MT. Long QT syndrome associated with syndactyly identified in females. Am J Cardiol 1995;76(10):744–745.

    Article  PubMed  CAS  Google Scholar 

  67. Splawski I, Timothy KW, Sharpe LM, et al. Cav1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 2004; 119:19–31.

    Article  PubMed  CAS  Google Scholar 

  68. Moss AJ, Zareba W, Hall WJ, et al. Effectiveness and limitations of beta-blocker therapy in congenital long-QT syndrome. Circulation 2000;101(6):616–623.

    PubMed  CAS  Google Scholar 

  69. Malfatto G, Beria G, Sala S, Bonazzi O, Schwartz PJ. Quantitative analysis of T wave abnormalities and their prognostic implications in the idiopathic long QT syndrome. J Am Coll Cardiol 1994;23(2): 296–301.

    PubMed  CAS  Google Scholar 

  70. Atiga WL, Calkins H, Lawrence JH, Tomaselli GF, Smith JM, Berger RD. Beat-to-beat repolarization lability identifies patients at risk for sudden cardiac death. J Cardiovasc Electrophysiol 1998; 9(9):899–908.

    Article  PubMed  CAS  Google Scholar 

  71. Zareba W. New electrocardiographic indices of risk stratification. J Electrocardiol 2001;34:332.

    Article  Google Scholar 

  72. Steinbigler P, Haberl R, Nespithal K, Spiegl A, Schmucking I, Steinbeck G. T wave spectral variance: A new method to determine inhomogeneous repolarization by T wave beat-to-beat variability in patients prone to ventricular arrhythmias. J Electrocardiol 1998;30(Suppl.):137–144.

    Article  PubMed  Google Scholar 

  73. Bhandari AK, Shapiro WA, Morady F, Shen EN, Mason J, Scheinman MM. Electrophysiologic testing in patients with the long QT syndrome. Circulation 1985;71(1):63–71.

    PubMed  CAS  Google Scholar 

  74. Nemec J, Ackerman, MJ, Tester D, Hejlik J, Shen WK. Catecholamine provoked microvoltage T wave alternans in genotyped long QT syndrome. Pacing Clin Electrophysiol 2003;26(8):1660–1667.

    Article  PubMed  Google Scholar 

  75. Nemec J, Hejlik JB, Shen WK, Ackerman MJ. Catecholamine-induced T-wave lability in congenital long QT syndrome: a novel phenomenon associated with syncope and cardiac arrest. Mayo Clin Proc 2003;78:40–50.

    Article  PubMed  Google Scholar 

  76. Priori SG, Maugeri FS, Schwartz PJ. The risk of sudden death as first cardiac event in asymptomatic patients with the long QT syndrome. Circulation 1998;98(Suppl. I):777 (abstract).

    Google Scholar 

  77. Schwartz PJ. The long QT syndrome. Curr Probl Cardiol 1997;22(6):297–351.

    Article  PubMed  CAS  Google Scholar 

  78. Chatrath R, Bell CM, Ackerman MJ. Beta-blocker therapy failures in symptomatic probands with genotyped long-QT syndrome. Pediatr Cardiol 2004;25(5):459–465.

    Article  PubMed  CAS  Google Scholar 

  79. Viskin S, Fish R, Zeltser D, et al. Arrhythmias in the congenital long QT syndrome: How often is torsade de pointes pause dependent? Heart 2000; 83(6):661–666.

    Article  PubMed  CAS  Google Scholar 

  80. Eldar M, Griffin JC, Van Hare GF, et al. Combined use of beta-adrenergic blocking agents and longterm cardiac pacing for patients with the long QT syndrome. JAm Coll Cardiol 1992;20(4):830–837.

    CAS  Google Scholar 

  81. Dorostkar PC, Eldar M, Belhassen B, Scheinman MM. Long-term follow-up of patients with longQT syndrome treated with beta-blockers and continuous pacing. Circulation 1999;100(24):2431–2436.

    PubMed  CAS  Google Scholar 

  82. Tan HL, Bardai A, Shimizu W, et al. Genotypespecific onset of arrhythmias in congenital long-QT syndrome: Possible therapy implications. Circulation 2006;114:2096–2103.

    Article  PubMed  Google Scholar 

  83. Chatrath R, Porter CJ, Ackerman MJ. Role of transvenous implantable cardioverter-defibrillators in preventing sudden cardiac death in children, adolescents, and young adults. Mayo Clin Proc 2002;77:226–231.

    PubMed  Google Scholar 

  84. Zareba W, Moss AJ, Daubert JP, Hall WJ, Robinson JL, Andrews M. Implantable cardio-verter defibrillator in high-risk long QT syndrome patients. J Cardiovasc Electrophysiol 2003;14:337–341.

    Article  PubMed  Google Scholar 

  85. Monnig G, Kobe J, Loher A, et al. Implantable cardioverter-defibrillator therapy in patients with congenital long-QT syndrome: A long-term follow-up. Heart Rhythm 2005;2(5):497–504.

    Article  PubMed  Google Scholar 

  86. Villain E, Denjoy I, Lupoglazoff JM, et al. Low incidence of cardiac events with B-blocking therapy in children with long QT syndrome. Eur Heart J2004;25:1405–1411.

    Article  PubMed  CAS  Google Scholar 

  87. Shimizu W, Antzelevitch C. Differential effects of beta-adrenergic agonists and antagonists in LQT1, LQT2 and LQT3 models of the long QT syndrome. JAm Coll Cardiol 2000;35(3):778–786.

    Article  CAS  Google Scholar 

  88. Schwartz PJ, Locati E. The idiopathic long QT syndrome: Pathogenetic mechanisms and therapy. Eur Heart J 1985;6(Suppl. D):103–114.

    PubMed  Google Scholar 

  89. Moss AJ, McDonald J. Unilateral cervicothoracic sympathetic ganglionectomy for the treatment of long QT interval syndrome. N Engl J Med 1971; 285(16):903–904.

    PubMed  CAS  Google Scholar 

  90. Schwartz PJ, Priori SG, Cerrone M, et al. Left cardiac sympathetic denervation in the management of high-risk patients affected by the long-QT syndrome. Circulation 2004;109(15):1826–1833.

    Article  PubMed  Google Scholar 

  91. Compton SJ, Lux RL, Ramsey MR, et al. Genetically defined therapy of inherited long-QT syndrome. Correction of abnormal repolarization by potassium. Circulation 1996;94(5):1018–1022.

    PubMed  CAS  Google Scholar 

  92. Etheridge SP, Compton SJ, Tristani-Firouzi M, Mason JW. A new oral therapy for long QT syndrome: Long-term oral potassium improves repolarization in patients with HERG mutations. J Am Coll Cardiol 2003;42:1777–1782.

    Article  PubMed  CAS  Google Scholar 

  93. Priori SG, Napolitano C, Schwartz PJ, et al. Association of long QT syndrome loci and cardiac events among patients treated with B-blockers. JAMA 2004;292:1341–1344.

    Article  PubMed  CAS  Google Scholar 

  94. Shimizu W, Antzelevitch C. Sodium channel block with mexiletine is effective in reducing dispersion of repolarization and preventing torsade des pointes in LQT2 and LQT3 models of the long-QT syndrome. Circulation 1997;96(6):2038–2047.

    PubMed  CAS  Google Scholar 

  95. Shimizu W, Antzelevitch C. Cellular basis for the ECG features of the LQT1 form of the long-QT syndrome: Effects of beta-adrenergic agonists and antagonists and sodium channel blockers on transmural dispersion of repolarization and torsade de pointes. Circulation 1998;98(21):2314–2322.

    PubMed  CAS  Google Scholar 

  96. Moss AJ, Windle JR, Hall WJ, et al. Safetyandefficacy of flecainide in subjects with long QT-3 syndrome (DeltaKPQ mutation): A randomized, doubleblind, placebo-controlled clinical trial. Ann Noninvasive Electrocardiol 2005;10(4 Suppl.):59–66.

    Article  PubMed  Google Scholar 

  97. Khan IA, Gowda RM. Novel therapeutics for treatment of long-QT syndrome and torsade de pointes. Int J Cardiol 2004;95(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  98. Priori SG, Napolitano C, Schwartz PJ, Bloise R, Crotti L, Ronchetti E. The elusive link between LQT3 and Brugada syndrome: The role of flecainide challenge. Circulation 2000;102:945–947.

    PubMed  CAS  Google Scholar 

  99. Vyas H, Johnson J, Houlihan R, Bauer BA, Ackerman MJ. Acquired long QT syndrome secondary to cesium chloride supplement. J Altern Complement Med 2006;12(10):1011–1014

    Article  PubMed  Google Scholar 

  100. Fitzgerald PT, Ackerman MJ. Drug-induced torsades de pointes: The evolving role of pharmaco-genetics. Heart Rhythm 2005;2:S30–S37.

    Article  PubMed  Google Scholar 

  101. Zipes DP, Ackerman MJ, Estes NA 3rd, Grant AO, Myerburg RJ, Van Hare G. Task Force 7: Arrhythmias. J Am Coll Cardiol 2005;45:1354–1363.

    Article  PubMed  Google Scholar 

  102. Maron BJ, Isner JM, McKenna WJ. 26th Bethesda conference: Recommendations for determining eligibility for competition in athletes with cardiovascular abnormalities. Task Force 3: Hypertrophic cardiomyopathy, myocarditis and other myopericardial diseases and mitral valve prolapse. JAm Coll Cardiol 1994;24(4):880–885.

    Article  CAS  Google Scholar 

  103. Taggart NW, Haglund CM, Tester DJ, Ackerman MJ. Diagnostic miscues in congenital long QT syndrome. Circulation 2007;115:2613–2620.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Ackerman, M.J., Khositseth, A., Tester, D.J., Schwartz, P.J. (2008). Congenital Long QT Syndrome. In: Gussak, I., Antzelevitch, C., Wilde, A.A.M., Friedman, P.A., Ackerman, M.J., Shen, WK. (eds) Electrical Diseases of the Heart. Springer, London. https://doi.org/10.1007/978-1-84628-854-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-854-8_33

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-853-1

  • Online ISBN: 978-1-84628-854-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics