Skip to main content

TRPM6 and TRPM7 Chanzymes Essential for Magnesium Homeostasis

  • Chapter
New Perspectives in Magnesium Research

Abstract

Mg2+ is the second most abundant intracellular cation and plays an essential role as cofactor in many enzymatic reactions. Regulation of the total body Mg2+ balance principally resides within the kidney that tightly matches the intestinal absorption of Mg2+. The identification of epithelial Mg2+ transporters in the kidney has been greatly facilitated by studying hereditary disorders with primary hypomagnesemia. Identification of the gene defect in hypomagnesemia with secondary hypocalcemia has recently elucidated the TRPM6 protein, a member of the transient receptor potential melastatin (TRPM) family. TRPM6 shows the highest homology with TRPM7, which has been identified as a Mg2+-permeable ion channel primarily required for cellular Mg2+ homeostasis. TRPM6 and TRPM7 are distinct from all other ion channels b ecause t hey are composed of a channel linked to a protein kinase domain and therefore referred to as chanzymes. These chanzymes are essential for Mg2+ homeostasis, which is critical for human health and cell viability. This chapter d escribes the characteristics of epithelial Mg2+ transport in general and highlights the distinctive features and the physiological relevance of these new chanzymes in (patho)physiological situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 269.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brunette M, Crochet M. Fluormetric method for the determination of magnesium in renal tubular fluid. Anal Biochem 1975;65:79–88.

    Article  PubMed  CAS  Google Scholar 

  2. Grimellec C, Poujeol P, Rouffignia C. 3H-inulin and electrolyte concentrations in Bowman’s capsule in rat kidney. Comparison with artificial ultrafiltration. Pflugers Arch 1975;354:117–131.

    Article  PubMed  CAS  Google Scholar 

  3. Dai L, Ritchie G, Kerstan D, et al. Magnesium transport in the renal distal convoluted tubule. Physiol Rev 2001;81:51–84.

    PubMed  CAS  Google Scholar 

  4. de Rouffignac C, Quamme G. Renal magnesium handling and its hormonal control. Physiol Rev 1994;74:305–322.

    PubMed  Google Scholar 

  5. Shafik I, Quamme G. Early adaptation of renal magnesium reabsorption in response to magnesium restriction. Am J Physiol 1989;257:F974–F977.

    PubMed  CAS  Google Scholar 

  6. Quamme G, Dirks J. Magnesium transport in the nephron. Am J Physiol 1980;239: F393–F401.

    PubMed  CAS  Google Scholar 

  7. Quamme G, Dirks J. Intraluminal and contraluminal magnesium on magnesium and calcium transfer in the rat nephron. Am J Physiol 1980;238:F187–F198.

    PubMed  CAS  Google Scholar 

  8. Voets T, Nilius B, Hoefs S, et al. TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem 2004;279:19–25.

    Article  PubMed  CAS  Google Scholar 

  9. Flatman P. Mechanisms of magnesium transport. Annu Rev Physiol 1991;53: 259–271.

    Article  PubMed  CAS  Google Scholar 

  10. Simon D, Lu Y, Choate K, et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 1999;285:103–106.

    Article  PubMed  CAS  Google Scholar 

  11. Meij I, Koenderink J, van Bokhoven H, et al. Dominant isolated renal magnesium loss is caused by misrouting of the Na+,K+-ATPase gamma-subunit. Nat Genet 2000;26:265–266.

    Article  PubMed  CAS  Google Scholar 

  12. Walder R, Shalev H, Brennan T, et al. Familial hypomagnesemia maps to chromosome 9q, not to the X chromosome: genetic linkage mapping and analysis of a balanced translocation breakpoint. Hum Mol Genet 1997;6:1491–1497.

    Article  PubMed  CAS  Google Scholar 

  13. Walder R, Landau D, Meyer P, et al. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet 2002;31:171–174.

    Article  PubMed  CAS  Google Scholar 

  14. Schlingmann K, Weber S, Peters M, et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet 2002;31:166–170.

    Article  PubMed  CAS  Google Scholar 

  15. Paunier L, Radde I, Kooh S, et al. Primary hypomagnesemia with secondary hypocalcemia in an infant. Pediatrics 1968;41:385–402.

    PubMed  CAS  Google Scholar 

  16. Milla P, Aggett P, Wolff O, et al. Studies in primary hypomagnesaemia: evidence for defective carrier-mediated small intestinal transport of magnesium. Gut 1979;20:1028–1033.

    PubMed  CAS  Google Scholar 

  17. Yamamoto T, Kabata H, Yagi R, et al. Primary hypomagnesemia with secondary hypocalcemia. Report of a case and review of the world literature. Magnesium 1985;4:15364.

    Google Scholar 

  18. Matzkin H, Lotan D, Boichis H. Primary hypomagnesemia with a probable double magnesium transport defect. Nephron 1989;52:83–86.

    PubMed  CAS  Google Scholar 

  19. Shalev H, Phillip M, Galil A, et al. Clinical presentation and outcome in primary familial hypomagnesaemia. Arch Dis Child 1998;78:127–130.

    PubMed  CAS  Google Scholar 

  20. Anast C, Mohs J, Kaplan S, et al. Evidence for parathyroid failure in magnesium deficiency. Science 1972;177:606–608.

    Article  PubMed  CAS  Google Scholar 

  21. Schlingmann K, Sassen M, Weber S, et al. Novel TRPM6 mutations in 21 families with primary hypomagnesemia and secondary hypocalcemia. J Am Soc Nephrol 2005;16:3061–3069.

    Article  PubMed  Google Scholar 

  22. Nadler M, Hermosura M, Inabe K, et al. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 2001;411:590–595.

    Article  PubMed  CAS  Google Scholar 

  23. Schmitz C, Perraud A, Johnson C, et al. Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 2003;114:191–200.

    Article  PubMed  CAS  Google Scholar 

  24. Clapham D, Runnels L, Strubing C. The TRP ion channel family. Nat Rev Neurosci 2001;2:387–96.

    Article  PubMed  CAS  Google Scholar 

  25. Montell C. Physiology, phylogeny, and functions of the TRP superfamily of cation channels. Sci STKE 2001;2001:RE1.

    PubMed  CAS  Google Scholar 

  26. Hoenderop J, Nilius B, Bindels R. Molecular mechanism of active Ca2+ reabsorption in the distal nephron. Annu Rev Physiol 2002;64:529–549.

    Article  PubMed  CAS  Google Scholar 

  27. Clapham D. TRP channels as cellular sensors. Nature 2003;426:517–524.

    Article  PubMed  CAS  Google Scholar 

  28. Runnels L, Yue L, Clapham DE. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 2001;291:1043–1047.

    Article  PubMed  CAS  Google Scholar 

  29. Groenestege W, Hoenderop J, van den Heuvel L, et al. The epithelial Mg2+ channel transient receptor potential melastatin 6 is regulated by dietary Mg2+ content and estrogens. J Am Soc Nephrol 2006;17:1035–1043.

    Article  PubMed  CAS  Google Scholar 

  30. Schmitz C, Dorovkov M, Zhao X, et al. The channel kinases TRPM6 and TRPM7 are functionally nonredundant. J Biol Chem 2005;280:37763–37771.

    Article  PubMed  CAS  Google Scholar 

  31. Yang W, Lee H, Hellinga H, et al. Structural analysis, identification, and design of calcium-binding sites in proteins. Proteins 2002;47:344–356.

    Article  PubMed  CAS  Google Scholar 

  32. Nicotera P, Bano D. The enemy at the gates. Ca2+ entry through TRPM7 channels and anoxic neuronal death. Cell 2003;115:768–770.

    Article  PubMed  CAS  Google Scholar 

  33. Aarts M, Iihara K, Wei WL, et al. A key role for TRPM7 channels in anoxic neuronal death. Cell 2003;115:863–877.

    Article  PubMed  CAS  Google Scholar 

  34. Clark K, Langeslag M, van Leeuwen B, et al. TRPM7, a novel regulator of actomyosin contractility and cell adhesion. EMBO J 2006;25:290–301.

    Article  PubMed  CAS  Google Scholar 

  35. Cole D, Quamme G. Inherited disorders of renal magnesium handling. J Am Soc Nephrol 2000;11:1937–1947.

    PubMed  CAS  Google Scholar 

  36. Nijenhuis T, Renkema K, Hoenderop J, et al. Acid-base status determines the renal expression of Ca2+ and Mg2+ transport proteins. J Am Soc Nephrol 2006;17:617–626.

    Article  PubMed  CAS  Google Scholar 

  37. Nijenhuis T, Vallon V, van der Kemp A, et al. Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J Clin Invest 2005;115:1651–1658.

    Article  PubMed  CAS  Google Scholar 

  38. Hermosura M, Monteilh-Zoller M, Scharenberg A, et al. Dissociation of the storeoperated calcium current I(CRAC) and the Mg-nucleotide-regulated metal ion current MagNuM. J Physiol 2002;539:445–458.

    Article  PubMed  CAS  Google Scholar 

  39. Kozak JA, Cahalan M. MIC channels are inhibited by internal divalent cations but not ATP. Biophys J 2003;84:922–927.

    Article  PubMed  CAS  Google Scholar 

  40. Runnels L, Yue L, Clapham D. The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat Cell Biol 2002;4:329–336.

    PubMed  CAS  Google Scholar 

  41. Montell C. Mg2+ homeostasis: the Mg2+nificent TRPM chanzymes. Curr Biol 2003;13:R799–R801.

    Article  PubMed  CAS  Google Scholar 

  42. Chien M, Cambier J. Divalent cation regulation of phosphoinositide metabolism. Naturally occurring B lymphoblasts contain a Mg2+-regulated phosphatidylinositol-specific phospholipase C. J Biol Chem 1990;265:9201–9207.

    PubMed  CAS  Google Scholar 

  43. Kozak J, Kerschbaum H, Cahalan M. Distinct properties of CRAC and MIC channels in RBL cells. J Gen Physiol 2002;120:221–235.

    PubMed  Google Scholar 

  44. Prakriya M, Lewis R. Separation and characterization of currents through storeoperated CRAC channels and Mg2+-inhibited cation (MIC) channels. J Gen Physiol 2002;119:487–507.

    Article  PubMed  CAS  Google Scholar 

  45. Jiang J, Li M, Yue L. Potentiation of TRPM7 inward currents by protons. J Gen Physiol 2005;126:137–150.

    Article  PubMed  CAS  Google Scholar 

  46. Chubanov V, Waldegger S, Mederos y Schnitzler M, et al. Disruption of TRPM6/ TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc Natl Acad Sci U S A 2004;101: 2894–2899.

    Article  PubMed  CAS  Google Scholar 

  47. Ryazanov A, Ward M, Mendola C, et al. Identification of a new class of protein kinases represented by eukaryotic elongation factor-2 kinase. Proc Natl Acad Sci U S A 1997;94:4884–4889.

    Article  PubMed  CAS  Google Scholar 

  48. Ryazanova L, Dorovkov M, Ansari A, et al. Characterization of the protein kinase activity of TRPM7/ChaK1, a protein kinase fused to the transient receptor potential ion channel. J Biol Chem 2004;279:3708–3716.

    Article  PubMed  CAS  Google Scholar 

  49. Dorovkov M, Ryazanov A. Phosphorylation of annexin I by TRPM7 channelkinase. J Biol Chem 2004;279:50643–50646.

    Article  PubMed  CAS  Google Scholar 

  50. Perretti M, Solito E. Annexin 1 and neutrophil apoptosis. Biochem Soc Trans 2004;32:507–510.

    Article  PubMed  CAS  Google Scholar 

  51. Schmitz C, Perraud A, Fleig A, Scharenberg AM. Dual-function ion channel/ protein kinases: novel components of vertebrate magnesium regulatory mechanisms. Pediatr Res 2004;55:734–737.

    Article  PubMed  CAS  Google Scholar 

  52. Matsushita M, Kozak JA, Shimizu Y, et al. Channel function is dissociated from the intrinsic kinase activity and autophosphorylation of TRPM7/ChaK1. J Biol Chem 2005;280:20793–20803.

    Article  PubMed  CAS  Google Scholar 

  53. Yamaguchi H, Matsushita M, Nairn A, et a l. Crystal structure of the a typical protein kinase domain of a TRP channel with phosphotransf erase activity. Mol Cell 2001;7:1047–1057.

    Article  PubMed  CAS  Google Scholar 

  54. Takezawa R, Schmitz C, Demeuse P, et al. Receptor-mediated regulation of the TRPM7 channel through its endogenous protein kinase domain. Proc Natl Acad Sci U S A 2004;101:6009–6014.

    Article  PubMed  CAS  Google Scholar 

  55. Demeuse P, Penner R, Fleig A. TRPM7 channel is regulated by magnesium nucleotides via its kinase domain. J Gen Physiol 2006;127:421–434.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Tiel Groenestege, W.M., Hoenderop, J.G.J., Bindels, R.J.M. (2007). TRPM6 and TRPM7 Chanzymes Essential for Magnesium Homeostasis. In: Nishizawa, Y., Morii, H., Durlach, J. (eds) New Perspectives in Magnesium Research. Springer, London. https://doi.org/10.1007/978-1-84628-483-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-483-0_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-388-8

  • Online ISBN: 978-1-84628-483-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics