Skip to main content

Molecular Dermatology Comes of Age

  • Protocol
  • First Online:
Molecular Dermatology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 961))

Abstract

Groundbreaking advances on the molecular and cellular physiological and physiopathological skin processes, including the complete sequencing of the genome of several species and the increased availability of gene-modified organisms, paved the way to firmly establishing molecular approaches and methods in experimental, translational, and clinical dermatology. As a result, newly developed experimental ex vivo assays and animal models prove exquisite tools for addressing fundamental physiological cutaneous processes and pathogenic mechanisms of skin diseases. A plethora of new findings that were generated using these experimental tools serve as a strong basis for intense translational research efforts aiming at developing new, specific, and sensitive diagnostic tests and efficient “personalized” therapies with less side-effects. Consequently, a broad array of molecular diagnostic tests and therapies for a wide spectrum of skin diseases ranging from genodermatoses through skin neoplasms, allergy, inflammatory and autoimmune diseases, are already routinely used in the clinical dermatology practice. This article highlights several major developments in molecular experimental and clinical dermatology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pauling L, Itano HA et al (1949) Sickle cell anemia, a molecular disease. Science 109:443

    PubMed  CAS  Google Scholar 

  2. Uitto J, Rodeck U (2012) Integration of investigative dermatology into the global biomedical research enterprise: past, present, and future. J Invest Dermatol 132:1029–1032

    Article  PubMed  CAS  Google Scholar 

  3. Rinn JL, Wang JK, Liu H, Montgomery K, van de Rijn M, Chang HY (2008) A systems biology approach to anatomic diversity of skin. J Invest Dermatol 128:776–782

    Article  PubMed  CAS  Google Scholar 

  4. Li Q, Frank M, Thisse CI, Thisse BV, Uitto J (2011) Zebrafish: a model system to study heritable skin diseases. J Invest Dermatol 131: 565–571

    Article  PubMed  CAS  Google Scholar 

  5. Carretero M, Guerrero-Aspizua S, Del Rio M (2011) Applicability of bioengineered human skin: from preclinical skin humanized mouse models to clinical regenerative therapies. Bioeng Bugs 2:203–207

    Article  PubMed  Google Scholar 

  6. Traupe H (1995) Is molecular dermatology a realistic perspective for 2020? Ann Dermatol Venereol 122:147–148

    PubMed  CAS  Google Scholar 

  7. Bruckner-Tuderman L, Uitto J (2001) Progress in molecular dermatology. Acta Derm Venereol 81:161–162

    Article  PubMed  CAS  Google Scholar 

  8. Feramisco JD, Sadreyev RI, Murray ML, Grishin NV, Tsao H (2009) Phenotypic and genotypic analyses of genetic skin disease through the Online Mendelian Inheritance in Man (OMIM) database. J Invest Dermatol 129:2628–2636

    Article  PubMed  CAS  Google Scholar 

  9. Uitto J, Christiano AM, McLean WH, McGrath JA (2011) Novel molecular therapies for heritable skin disorders. J Invest Dermatol 132:820–828

    Article  PubMed  Google Scholar 

  10. Kiritsi D, Kern JS, Schumann H, Kohlhase J, Has C, Bruckner-Tuderman L (2011) Molecular mechanisms of phenotypic variability in junctional epidermolysis bullosa. J Med Genet 48:450–457

    Article  PubMed  CAS  Google Scholar 

  11. Epstein EH (2008) Basal cell carcinomas: attack of the hedgehog. Nat Rev Cancer 8:743–754

    Article  PubMed  CAS  Google Scholar 

  12. Irvine AD, McLean WH, Leung DY (2011) Filaggrin mutations associated with skin and allergic diseases. N Engl J Med 365: 1315–1327

    Article  PubMed  CAS  Google Scholar 

  13. Kubo A, Nagao K, Amagai M (2012) Epidermal barrier dysfunction and cutaneous sensitization in atopic diseases. J Clin Invest 122:440–447

    Article  PubMed  CAS  Google Scholar 

  14. Lai-Cheong JE, McGrath JA (2011) Next-generation diagnostics for inherited skin disorders. J Invest Dermatol 131:1971–1973

    Article  PubMed  CAS  Google Scholar 

  15. Blaydon DC, Biancheri P, Di WL, Plagnol V, Cabral RM, Brooke MA, van Heel DA, Ruschendorf F, Toynbee M, Walne A, O’Toole EA, Martin JE, Lindley K, Vulliamy T, Abrams DJ, MacDonald TT, Harper JI, Kelsell DP (2011) Inflammatory skin and bowel disease linked to ADAM17 deletion. N Engl J Med 365:1502–1508

    Article  PubMed  CAS  Google Scholar 

  16. Blaydon DC, Nitoiu D, Eckl KM, Cabral RM, Bland P, Hausser I, van Heel DA, Rajpopat S, Fischer J, Oji V, Zvulunov A, Traupe H, Hennies HC, Kelsell DP (2011) Mutations in CSTA, encoding Cystatin A, underlie exfoliative ichthyosis and reveal a role for this protease inhibitor in cell-cell adhesion. Am J Hum Genet 89:564–571

    Article  PubMed  CAS  Google Scholar 

  17. Cullinane AR, Vilboux T, O’Brien K, Curry JA, Maynard DM, Carlson-Donohoe H, Ciccone C, Markello TC, Gunay-Aygun M, Huizing M, Gahl WA (2011) Homozygosity mapping and whole-exome sequencing to detect SLC45A2 and G6PC3 mutations in a single patient with oculocutaneous albinism and neutropenia. J Invest Dermatol 131:2017–2025

    Article  PubMed  CAS  Google Scholar 

  18. Lindhurst MJ, Sapp JC, Teer JK, Johnston JJ, Finn EM, Peters K, Turner J, Cannons JL, Bick D, Blakemore L, Blumhorst C, Brockmann K, Calder P, Cherman N, Deardorff MA, Everman DB, Golas G, Greenstein RM, Kato BM, Keppler-Noreuil KM, Kuznetsov SA, Miyamoto RT, Newman K, Ng D, O’Brien K, Rothenberg S, Schwartzentruber DJ, Singhal V, Tirabosco R, Upton J, Wientroub S, Zackai EH, Hoag K, Whitewood-Neal T, Robey PG, Schwartzberg PL, Darling TN, Tosi LL, Mullikin JC, Biesecker LG (2011) A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N Engl J Med 365:611–619

    Article  PubMed  CAS  Google Scholar 

  19. Lai-Cheong JE, McGrath JA, Uitto J (2011) Revertant mosaicism in skin: natural gene therapy. Trends Mol Med 17:140–148

    Article  PubMed  Google Scholar 

  20. Di Meglio P, Perera GK, Nestle FO (2011) The multitasking organ: recent insights into skin immune function. Immunity 35:857–869

    Article  PubMed  Google Scholar 

  21. Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ (2009) Skin immune sentinels in health and disease. Nat Rev Immunol 9:679–691

    PubMed  CAS  Google Scholar 

  22. Schroder JM, Harder J (2006) Antimicrobial skin peptides and proteins. Cell Mol Life Sci 63:469–486

    Article  PubMed  CAS  Google Scholar 

  23. Gallo RL, Kulesz-Martin M, Bickenbach JR (2011) Montagna symposium 2010: small molecules: skin as the first line of defense. J Invest Dermatol 131:2166–2168

    Article  PubMed  CAS  Google Scholar 

  24. Nakatsuji T, Gallo RL (2012) Antimicrobial peptides: old molecules with new ideas. J Invest Dermatol 132:887–895

    Article  PubMed  CAS  Google Scholar 

  25. Stanley JR, Amagai M (2008) Autoimmune bullous diseases: historical perspectives. J Invest Dermatol 128:E16–E18

    PubMed  Google Scholar 

  26. Liu Z, Rubenstein DS (2008) Pathophysiology of autoimmune bullous diseases. J Invest Dermatol 128:E22–E24

    Article  PubMed  Google Scholar 

  27. Hertl M, Zillikens D (2008) Clinical and molecular characterization of autoimmune bullous diseases. J Invest Dermatol 128:E19–E21

    PubMed  Google Scholar 

  28. Mihai S, Sitaru C (2007) Immunopathology and molecular diagnosis of autoimmune bullous diseases. J Cell Mol Med 11:462–481

    Article  PubMed  CAS  Google Scholar 

  29. Amagai M, Hashimoto T, Shimizu N, Nishikawa T (1994) Absorption of pathogenic autoantibodies by the extracellular domain of pemphigus vulgaris antigen (Dsg3) produced by baculovirus. J Clin Invest 94:59–67

    Article  PubMed  CAS  Google Scholar 

  30. Liu Z, Diaz LA, Troy JL, Taylor AF, Emery DJ, Fairley JA, Giudice GJ (1993) A passive transfer model of the organ-specific autoimmune disease, bullous pemphigoid, using antibodies generated against the hemidesmosomal antigen, BP180. J Clin Invest 92:2480–2488

    Article  PubMed  CAS  Google Scholar 

  31. Lazarova Z, Yee C, Darling T, Briggaman RA, Yancey KB (1996) Passive transfer of anti-laminin 5 antibodies induces subepidermal blisters in neonatal mice. J Clin Invest 98:1509–1518

    Article  PubMed  CAS  Google Scholar 

  32. Sitaru C, Mihai S, Otto C, Chiriac MT, Hausser I, Dotterweich B, Saito H, Rose C, Ishiko A, Zillikens D (2005) Induction of dermal-epidermal separation in mice by passive transfer of antibodies specific to type VII collagen. J Clin Invest 115:870–878

    PubMed  CAS  Google Scholar 

  33. Nestle FO, Kaplan DH, Barker J (2009) Psoriasis. N Engl J Med 361:496–509

    Article  PubMed  CAS  Google Scholar 

  34. Von Hoff DD, LoRusso PM, Rudin CM, Reddy JC, Yauch RL, Tibes R, Weiss GJ, Borad MJ, Hann CL, Brahmer JR, Mackey HM, Lum BL, Darbonne WC, Marsters JC Jr, de Sauvage FJ, Low JA (2009) Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med 361:1164–1172

    Article  Google Scholar 

  35. Nikolaou VA, Stratigos AJ, Flaherty KT, Tsao H (2012) Melanoma: new insights and new therapies. J Invest Dermatol 132:854–863

    Article  PubMed  CAS  Google Scholar 

  36. Mavilio F, Pellegrini G, Ferrari S, Di Nunzio F, Di Iorio E, Recchia A, Maruggi G, Ferrari G, Provasi E, Bonini C, Capurro S, Conti A, Magnoni C, Giannetti A, De Luca M (2006) Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat Med 12:1397–1402

    Article  PubMed  CAS  Google Scholar 

  37. Wagner JE, Ishida-Yamamoto A, McGrath JA, Hordinsky M, Keene DR, Woodley DT, Chen M, Riddle MJ, Osborn MJ, Lund T, Dolan M, Blazar BR, Tolar J (2010) Bone marrow transplantation for recessive dystrophic epidermolysis bullosa. N Engl J Med 363:629–639

    Article  PubMed  CAS  Google Scholar 

  38. Uitto J (2011) Regenerative medicine for skin diseases: iPS cells to the rescue. J Invest Dermatol 131:812–814

    Article  PubMed  CAS  Google Scholar 

  39. Itoh M, Kiuru M, Cairo MS, Christiano AM (2011) Generation of keratinocytes from normal and recessive dystrophic epidermolysis bullosa-induced pluripotent stem cells. Proc Natl Acad Sci U S A 108:8797–8802

    Article  PubMed  CAS  Google Scholar 

  40. Tolar J, Xia L, Riddle MJ, Lees CJ, Eide CR, McElmurry RT, Titeux M, Osborn MJ, Lund TC, Hovnanian A, Wagner JE, Blazar BR (2011) Induced pluripotent stem cells from individuals with recessive dystrophic epidermolysis bullosa. J Invest Dermatol 131:848–856

    Article  PubMed  CAS  Google Scholar 

  41. Bilousova G, Chen J, Roop DR (2011) Differentiation of mouse induced pluripotent stem cells into a multipotent keratinocyte lineage. J Invest Dermatol 131:857–864

    Article  PubMed  CAS  Google Scholar 

  42. Eming R, Hertl M (2006) Immunoadsorption in pemphigus. Autoimmunity 39:609–616

    Article  PubMed  CAS  Google Scholar 

  43. Zambruno G, Borradori L (2008) Rituximab immunotherapy in pemphigus: therapeutic effects beyond B-cell depletion. J Invest Dermatol 128:2745–2747

    Article  PubMed  CAS  Google Scholar 

  44. Blumberg RS, Dittel B, Hafler D, von Herrath M, Nestle FO (2012) Unraveling the autoimmune translational research process layer by layer. Nat Med 18:35–41

    Article  PubMed  CAS  Google Scholar 

  45. DeLouise LA (2012) Applications of nanotechnology in dermatology. J Invest Dermatol 132:964–975

    Article  PubMed  CAS  Google Scholar 

  46. Nasir A (2010) Nanotechnology and dermatology: part I—potential of nanotechnology. Clin Dermatol 28:458–466

    Article  PubMed  Google Scholar 

  47. Nasir A (2010) Nanotechnology and dermatology: part II–risks of nanotechnology. Clin Dermatol 28:581–588

    Article  PubMed  Google Scholar 

  48. Fuchs E, Green H (1980) Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell 19:1033–1042

    Article  PubMed  CAS  Google Scholar 

  49. Stanley JR, Hawley-Nelson P, Yuspa SH, Shevach EM, Katz SI (1981) Characterization of bullous pemphigoid antigen: a unique basement membrane protein of stratified squamous epithelia. Cell 24:897–903

    Article  PubMed  CAS  Google Scholar 

  50. Barrandon Y, Green H (1987) Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci U S A 84:2302–2306

    Article  PubMed  CAS  Google Scholar 

  51. Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61:1329–1337

    Article  PubMed  CAS  Google Scholar 

  52. Coulombe PA, Hutton ME, Letai A, Hebert A, Paller AS, Fuchs E (1991) Point mutations in human keratin 14 genes of epidermolysis bullosa simplex patients: genetic and functional analyses. Cell 66:1301–1311

    Article  PubMed  CAS  Google Scholar 

  53. Amagai M, Klaus-Kovtun V, Stanley JR (1991) Autoantibodies against a novel epithelial cadherin in pemphigus vulgaris, a disease of cell adhesion. Cell 67:869–877

    Article  PubMed  CAS  Google Scholar 

  54. Steel KP, Davidson DR, Jackson IJ (1992) TRP-2/DT, a new early melanoblast marker, shows that steel growth factor (c-kit ligand) is a survival factor. Development 115:1111–1119

    PubMed  CAS  Google Scholar 

  55. Christiano AM, Greenspan DS, Hoffman GG, Zhang X, Tamai Y, Lin AN, Dietz HC, Hovnanian A, Uitto J (1993) A missense mutation in type VII collagen in two affected siblings with recessive dystrophic epidermolysis bullosa. Nat Genet 4:62–66

    Article  PubMed  CAS  Google Scholar 

  56. Hilal L, Rochat A, Duquesnoy P, Blanchet-Bardon C, Wechsler J, Martin N, Christiano AM, Barrandon Y, Uitto J, Goossens M et al (1993) A homozygous insertion-deletion in the type VII collagen gene (COL7A1) in Hallopeau-Siemens dystrophic epidermolysis bullosa. Nat Genet 5:287–293

    Article  PubMed  CAS  Google Scholar 

  57. Maloney DG, Liles TM, Czerwinski DK, Waldichuk C, Rosenberg J, Grillo-Lopez A, Levy R (1994) Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood 84:2457–2466

    PubMed  CAS  Google Scholar 

  58. Carroll JM, Romero MR, Watt FM (1995) Suprabasal integrin expression in the epidermis of transgenic mice results in developmental defects and a phenotype resembling psoriasis. Cell 83:957–968

    Article  PubMed  CAS  Google Scholar 

  59. Jonkman MF, Scheffer H, Stulp R, Pas HH, Nijenhuis M, Heeres K, Owaribe K, Pulkkinen L, Uitto J (1997) Revertant mosaicism in epidermolysis bullosa caused by mitotic gene conversion. Cell 88:543–551

    Article  PubMed  CAS  Google Scholar 

  60. Harder J, Bartels J, Christophers E, Schroder JM (1997) A peptide antibiotic from human skin. Nature 387:861

    Article  PubMed  CAS  Google Scholar 

  61. Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, Radmacher M, Simon R, Yakhini Z, Ben-Dor A, Sampas N, Dougherty E, Wang E, Marincola F, Gooden C, Lueders J, Glatfelter A, Pollock P, Carpten J, Gillanders E, Leja D, Dietrich K, Beaudry C, Berens M, Alberts D, Sondak V (2000) Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406:536–540

    Article  PubMed  CAS  Google Scholar 

  62. Amagai M, Matsuyoshi N, Wang ZH, Andl C, Stanley JR (2000) Toxin in bullous impetigo and staphylococcal scalded-skin syndrome targets desmoglein 1. Nat Med 6:1275–1277

    Article  PubMed  CAS  Google Scholar 

  63. Amagai M, Tsunoda K, Suzuki H, Nishifuji K, Koyasu S, Nishikawa T (2000) Use of autoantigen-knockout mice in developing an active autoimmune disease model for pemphigus. J Clin Invest 105:625–631

    Article  PubMed  CAS  Google Scholar 

  64. Ellis CN, Krueger GG (2001) Treatment of chronic plaque psoriasis by selective targeting of memory effector T lymphocytes. N Engl J Med 345:248–255

    Article  PubMed  CAS  Google Scholar 

  65. Morris RJ, Liu Y, Marles L, Yang Z, Trempus C, Li S, Lin JS, Sawicki JA, Cotsarelis G (2004) Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 22:411–417

    Article  PubMed  CAS  Google Scholar 

  66. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E (2004) Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118:635–648

    Article  PubMed  CAS  Google Scholar 

  67. Nishimura EK, Granter SR, Fisher DE (2005) Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science 307:720–724

    Article  PubMed  CAS  Google Scholar 

  68. Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, Cho KH, Aiba S, Brocker EB, LeBoit PE, Pinkel D, Bastian BC (2005) Distinct sets of genetic alterations in melanoma. N Engl J Med 353:2135–2147

    Article  PubMed  CAS  Google Scholar 

  69. Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, Goudie DR, Sandilands A, Campbell LE, Smith FJ, O’Regan GM, Watson RM, Cecil JE, Bale SJ, Compton JG, DiGiovanna JJ, Fleckman P, Lewis-Jones S, Arseculeratne G, Sergeant A, Munro CS, El Houate B, McElreavey K, Halkjaer LB, Bisgaard H, Mukhopadhyay S, McLean WH (2006) Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 38:441–446

    Article  PubMed  CAS  Google Scholar 

  70. Smith FJ, Irvine AD, Terron-Kwiatkowski A, Sandilands A, Campbell LE, Zhao Y, Liao H, Evans AT, Goudie DR, Lewis-Jones S, Arseculeratne G, Munro CS, Sergeant A, O’Regan G, Bale SJ, Compton JG, DiGiovanna JJ, Presland RB, Fleckman P, McLean WH (2006) Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet 38:337–342

    Article  PubMed  CAS  Google Scholar 

  71. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, O’Dwyer PJ, Lee RJ, Grippo JF, Nolop K, Chapman PB (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:809–819

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work of the authors is supported by grants from the Deutsche Forschungsgemeinschaft DFG HA 5663/1-1 and HA 5663/2 (C.H.), SI-1281/2-1 and SI-1281/4-1 (C.S.), from the European Community’s Seventh Framework Programme [FP7-2007-2013] under grant agreement No. HEALTH-F4-2011-282095 (C.S.), and from the Medical Faculty of the University of Freiburg (C.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Has .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Has, C., Sitaru, C. (2013). Molecular Dermatology Comes of Age. In: Has, C., Sitaru, C. (eds) Molecular Dermatology. Methods in Molecular Biology, vol 961. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-227-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-227-8_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-226-1

  • Online ISBN: 978-1-62703-227-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics