Skip to main content

Western Diet-Mediated mTORC1-Signaling in Acne, Psoriasis, Atopic Dermatitis, and Related Diseases of Civilization: Therapeutic Role of Plant-Derived Natural mTORC1 Inhibitors

  • Chapter
  • First Online:
Bioactive Dietary Factors and Plant Extracts in Dermatology

Part of the book series: Nutrition and Health ((NH))

Abstract

Nutrient signaling of Western diet plays a fundamental role in the pathogenesis of epidemic skin diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2DG:

2-Desoxyglucose

4E-BP:

Eukaryotic initiation factor (eIF) 4E-binding protein

AD:

Atopic dermatitis

Akt:

Akt kinase (protein kinase B)

AMP:

Adenosine monophosphate

AMPK:

AMP-activated protein kinase

ATP:

Adenosine triphosphate

BCAA:

Branched-chain amino acid

BCAT2:

Branched-chain aminotransferase-2

DHT:

Dihydrotestosterone

DIM:

3,3′-Diindolylmethane

EGCG:

Epigallocatechin-3-gallate

ERK:

Mitogen-activated protein kinase

FoxO:

Forkhead box class O transcription factor

GDP:

Guanosine diphosphate

GH:

Growth hormone

GHR:

Growth hormone receptor

GIP:

Glucose-dependent insulinotropic polypeptide

GR:

Glucocorticoid receptor

GTP:

Guanosine triphosphate

IgE:

Immunoglobulin E

IGF:

Insulin-like growth factor

IGF1R:

IGF-1 receptor

IKK:

Inhibitor of kappa light chain gene enhancer in B cells

IL:

Interleukin

IRS:

Insulin receptor substrate

KLF:

Krüppel-like factor

LDL:

Low density lipoprotein

LKB:

Liver kinase B

mTOR:

Mammalian target of rapamycin

NALA:

N-Acetylleucine amide

NF-κB:

Nuclear factor kappa B

PCOS:

Polycystic ovary syndrome

PDGF:

Platelet-derived growth factor

PI3K:

Phosphoinositol-3 kinase

PTEN:

Phosphatase and tensin homolog on chromosome 10

Rag:

Ras-related GTP-binding protein

Raptor:

Regulatory associated protein of mTOR

REDD1:

Regulated in development and DNA damage responses

Rheb:

Ras homolog enriched in brain

Rictor:

Rapamycin-insensitive companion of mTOR

RSK:

Ribosomal S6 kinase

S6K:

p70 S6 Kinase

SREBP:

Sterol regulatory element binding protein

TCR:

T cell receptor

TNF:

Tumor necrosis factor

TOR:

Target of rapamycin

TSC:

Tuberous sclerosis complex

TSC1:

Hamartin

TSC2:

Tuberin

References

  1. Inoki K, Ouyang H, Li Y, et al. Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev. 2005;69:79–100.

    Article  CAS  PubMed  Google Scholar 

  2. Bhaskar PT, Hay N. The two TORCs and Akt. Dev Cell. 2007;12:487–502.

    Article  CAS  PubMed  Google Scholar 

  3. Wang X, Proud CG. Nutrient control of TORC1, a cell-cycle regulator. Cell. 2009;19:260–7.

    CAS  Google Scholar 

  4. Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell. 2010;40:310–22.

    Article  CAS  PubMed  Google Scholar 

  5. Suzuki T, Inoki K. Spatial regulation of the mTORC1 system in amino acids sensing pathway. Acta Biochim Biophys Sin. 2011;43:671–9.

    Article  CAS  PubMed  Google Scholar 

  6. Wang X, Proud CG. mTORC1 signaling: what we still don’t know. J Mol Cell Biol. 2011;3:206–20.

    Article  CAS  PubMed  Google Scholar 

  7. Shaw RJ. LKB1 and AMPK control of mTOR signalling and growth. Acta Physiol (Oxf). 2009;196:65–80.

    Article  CAS  Google Scholar 

  8. Avruch J, Long X, Ortiz-Vega S, et al. Amino acid regulation of TOR complex 1. Am J Physiol Endocrinol Metab. 2009;296:592–602.

    Article  CAS  Google Scholar 

  9. Sancak Y, Peterson TR, Shaul YD, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 2008;320:1496–501.

    Article  CAS  PubMed  Google Scholar 

  10. Sancak Y, Bar-Peled L, Zoncu R, et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010;141:290–303.

    Article  CAS  PubMed  Google Scholar 

  11. Goberdhan DCI. Intracellular amino acid sensing and mTORC1-regulated growth: new ways to block an old target? Curr Opin Investig Drugs. 2010;11:1360–7.

    CAS  PubMed  Google Scholar 

  12. Inoki K, Li Y, Zhu T, et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002;4:648–57.

    Article  CAS  PubMed  Google Scholar 

  13. Manning BD, Tee AR, Logsdon MN, et al. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide-3-kinase/akt pathway. Mol Cell. 2002;10:151–62.

    Article  CAS  PubMed  Google Scholar 

  14. Tee AR, Fingar DC, Manning BD, et al. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci U S A. 2001;99:13571–6.

    Article  CAS  Google Scholar 

  15. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115:577–90.

    Article  CAS  PubMed  Google Scholar 

  16. Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30:214–26.

    Article  CAS  PubMed  Google Scholar 

  17. Hay N. Interplay between FOXO, TOR, and Akt. Biochim Biophys Acta. 2011;1813(11):1965–70.

    Article  CAS  PubMed  Google Scholar 

  18. Gross DN, Wan M, Birnbaum MJ. The role of FOXO in the regulation of metabolism. Curr Diab Rep. 2009;9:208–14.

    Article  CAS  PubMed  Google Scholar 

  19. Chen CC, Jeon SM, Bhaskar PT, et al. FoxOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and Rictor. Dev Cell. 2010;18:592–604.

    Article  CAS  PubMed  Google Scholar 

  20. Greer EL, Oskoui PR, Banko MR, et al. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem. 2007;282:30107–19.

    Article  CAS  PubMed  Google Scholar 

  21. Cao Y, Kamioka Y, Yokoi N, et al. Interaction of FoxO1 and TSC2 induces insulin resistance through activation of the mammalian target of rapamycin/p70 S6K pathway. J Biol Chem. 2006;52:40242–51.

    Article  CAS  Google Scholar 

  22. Hara K, Yonezawa K, Weng QP, et al. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4EBP1 through a common effector mechanism. J Biol Chem. 1998;273:14484–94.

    Article  CAS  PubMed  Google Scholar 

  23. Long X, Ortiz-Vega S, Lin Y, et al. Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J Biol Chem. 2005;280:23433–6.

    Article  CAS  PubMed  Google Scholar 

  24. Nobukuni T, Joaquin M, Roccio M, et al. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci U S A. 2005;102:14238–43.

    Article  CAS  PubMed  Google Scholar 

  25. Zick Y. Ser/Thr phosphorylation of IRS proteins: a molecular basis for insulin resistance. Sci STKE. 2005;2005(268):pe4.

    Article  PubMed  Google Scholar 

  26. Porstmann T, Santos CR, Lewis C, et al. A new player in the orchestra of cell growth: SREBP activity is regulated by mTORC1 and contributes to the regulation of cell and organ size. Biochem Soc Trans. 2009;37:278–83.

    Article  CAS  PubMed  Google Scholar 

  27. Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature. 2006;441:424–30.

    Article  CAS  PubMed  Google Scholar 

  28. Dann SG, Selvaraj A, Thomas G. mTOR Complex1-S6K1 signaling: at the crossroads of obesity, diabetes and cancer. Trends Mol Med. 2007;13:252–9.

    Article  CAS  PubMed  Google Scholar 

  29. Mieulet V, Lamb RF. Tuberous sclerosis complex: liking cancer to metabolism. Trends Mol Med. 2010;16:329–35.

    Article  CAS  PubMed  Google Scholar 

  30. Proud CG. mTOR signalling in health and disease. Biochem Soc Trans. 2011;39:431–6.

    Article  CAS  PubMed  Google Scholar 

  31. Rosner M, Hanneder M, Siegel N, et al. The mTOR pathway and its role in human genetic diseases. Mutat Res. 2008;659:284–92.

    Article  CAS  PubMed  Google Scholar 

  32. Cordain L, Eades MR, Eades MD. Hyperinsulinemic diseases of civilization: more than just Syndrome X. Comp Biochem Physiol A Mol Integr Physiol. 2003;136:95–112.

    Article  PubMed  CAS  Google Scholar 

  33. Melnik BC. Milk signalling in the pathogenesis of type 2 diabetes. Med Hypotheses. 2011;76:553–9.

    Article  CAS  PubMed  Google Scholar 

  34. Rich-Edwards JW, Ganmaa D, Pollak MN, et al. Milk consumption and the prepubertal somatotropic axis. Nutr J. 2007;6:28.

    Article  PubMed  CAS  Google Scholar 

  35. Nilsson M, Holst JJ, Björck IM. Metabolic effects of amino acid mixtures and whey protein in healthy subjects: studies using glucose-equivalent drinks. Am J Clin Nutr. 2007;85:996–1004.

    CAS  PubMed  Google Scholar 

  36. Hoyt G, Hickey MS, Cordain L. Dissociation of the glycaemic and insulinaemic responses to whole and skimmed milk. Br J Nutr. 2005;93:175–7.

    Article  CAS  PubMed  Google Scholar 

  37. Hoppe C, Mølgaard C, Vaag A, et al. High intakes of milk, but not meat, increase s-insulin and insulin resistance in 8-year-old boys. Eur J Clin Nutr. 2005;59:393–8.

    Article  CAS  PubMed  Google Scholar 

  38. Norat T, Dossus L, Rinaldi S, et al. Diet, serum insulin-like growth factor-I and IGF-binding protein-3 in European women. Eur J Clin Nutr. 2007;6:91–8.

    Article  CAS  Google Scholar 

  39. Crowe FL, Key TJ, Allen NE, et al. The association between diet and serum concentrations of IGF-I, IGFBP-1, IGFBP-2, and IGFBP-3 in the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol Biomarkers Prev. 2009;18:1333–40.

    Article  CAS  PubMed  Google Scholar 

  40. Melnik BC. Milk—the promoter of chronic Western diseases. Med Hypotheses. 2009;72:631–9.

    Article  CAS  PubMed  Google Scholar 

  41. Melnik BC. Permanent impairment of insulin resistance from pregnancy to adulthood: the primary basic risk factor of chronic Western diseases. Med Hypotheses. 2009;73:670–81.

    Article  CAS  PubMed  Google Scholar 

  42. Melnik BC, John SM, Schmitz G. Over-stimulation of insulin/IGF-1 signaling by Western diet may promote diseases of civilization: lessons learnt from Laron syndrome. Nutr Metab (Lond). 2011;8:41.

    Article  CAS  Google Scholar 

  43. Millward DJ, Layman DK, Tomé D, et al. Protein quality assessment: impact of expanding understanding of protein and amino acid needs for optimal health. Am J Clin Nutr. 2008;87:1576S–81.

    CAS  PubMed  Google Scholar 

  44. Dennis MD, Baum JI, Kimball SR, et al. Mechanisms involved in the coordinate regulation of mTORC1 by insulin and amino acids. J Biol Chem. 2011;286:8287–96.

    Article  CAS  PubMed  Google Scholar 

  45. James WD. Clinical practice: acne. N Engl J Med. 2005;352:1463–72.

    Article  CAS  PubMed  Google Scholar 

  46. Collier CN, Harper JC, Cantrell WC, et al. The prevalence of acne in adults 20 years and older. J Am Acad Dermatol. 2008;58:56–9.

    Article  PubMed  Google Scholar 

  47. Cordain L, Lindeberg S, Hurtado M, et al. Acne vulgaris. A disease of western civilization. Arch Dermatol. 2002;138:1584–90.

    Article  PubMed  Google Scholar 

  48. Lindeberg S, Eliasson M, Lindahl B, et al. Low serum insulin in traditional Pacific Islanders: the Kitava Study. Metabolism. 1999;48:1216–9.

    Article  CAS  PubMed  Google Scholar 

  49. Smith RN, Mann NJ, Braue A, et al. A low-glycemic-load diet improves symptoms in acne vulgaris patients: a randomized controlled trial. Am J Clin Nutr. 2007;86:107–15.

    CAS  PubMed  Google Scholar 

  50. Smith RN, Braue A, Varigos GA, et al. The effect of a low glycemic load diet on acne vulgaris and the fatty acid composition of skin surface triglycerides. J Dermatol Sci. 2008;50:41–52.

    Article  CAS  PubMed  Google Scholar 

  51. Smith R, Mann N, Mäkeläinen H, et al. A pilot study to determine the short-term effects of a low glycemic load diet on hormonal markers of acne: a nonrandomized, parallel, controlled feeding trial. Mol Nutr Food Res. 2008;52:718–26.

    Article  CAS  PubMed  Google Scholar 

  52. Adebamowo CA, Spiegelman D, Danby FW, et al. High school dietary intake and acne. J Am Acad Dermatol. 2005;52:207–11.

    Article  PubMed  Google Scholar 

  53. Adebamowo CA, Spiegelman D, Berkey CS, et al. Milk consumption and acne in adolescent girls. Dermatol Online J. 2006;12:1–12.

    PubMed  Google Scholar 

  54. Adebamowo CA, Spiegelman D, Berkey CS, et al. Milk consumption and acne in teenaged boys. J Am Acad Dermatol. 2008;58:787–93.

    Article  PubMed  Google Scholar 

  55. Spencer EH, Ferdowsian HR, Barnard ND. Diet and acne: a review of the evidence. Int J Dermatol. 2009;48:339–47.

    Article  CAS  PubMed  Google Scholar 

  56. Melnik B. Acne vulgaris. Role of diet. Hautarzt. 2010;61:115–25.

    Article  CAS  PubMed  Google Scholar 

  57. Danby FW. Nutrition and acne. Clin Dermatol. 2010;28:598–604.

    Article  PubMed  Google Scholar 

  58. Melnik BC. Evidence for acne-promoting effects of milk and other insulinotropic dairy products. Nestle Nutr Workshop Ser Pediatr Program. 2011;67:131–45.

    Article  CAS  PubMed  Google Scholar 

  59. Bowe WP, Joshi SS, Shalita AR. Diet and acne. J Am Acad Dermatol. 2010;63:124–41.

    Article  PubMed  Google Scholar 

  60. Veith WB, Silverberg NB. The association of acne vulgaris with diet. Cutis. 2011;88(2):84–91.

    PubMed  Google Scholar 

  61. Melnik BC, Schmitz G. Role of insulin, insulin-like growth factor-1, hyperglycaemic food and milk consumption in the pathogenesis of acne vulgaris. Exp Dermatol. 2009;18:833–41.

    Article  CAS  PubMed  Google Scholar 

  62. Smith TM, Gilliland K, Clawson GA, et al. IGF-1 induces SREBP-1 expression and lipogenesis in SEB-1 sebocytes via activation of the phosphoinositide 3-kinase/Akt pathway. J Invest Dermatol. 2008;128:1286–93.

    Article  CAS  PubMed  Google Scholar 

  63. Melnik BC. FoxO1—the key for the pathogenesis and therapy of acne? J Dtsch Dermatol Ges. 2010;8:105–14.

    PubMed  Google Scholar 

  64. Melnik BC. The role of transcription factor FoxO1 in the pathogenesis of acne vulgaris and the mode of isotretinoin action. G Ital Dermatol Venereol. 2010;145:559–71.

    CAS  PubMed  Google Scholar 

  65. Horton R, Pasupuletti V. AntonipillaiI. Androgen induction of 5α-reductase may be mediated via insulin-like growth factor-I. Endocrinology. 1993;133:447–51.

    Article  CAS  PubMed  Google Scholar 

  66. Ben-Amitai D, Laron Z. Effect of insulin-like growth factor-1 deficiency or administration on the occurrence of acne. J Eur Acad Dermatol Venereol. 2011;25:950–4.

    Article  CAS  PubMed  Google Scholar 

  67. Fan WQ, Yanase T, Morinaga H, et al. Insulin-like growth factor 1/insulin signaling activates androgen signaling through direct interactions of FoxO1 with androgen receptor. J Biol Chem. 2007;282:7329–38.

    Article  CAS  PubMed  Google Scholar 

  68. Ma Q, Fu W, Li P, et al. FoxO1 mediates PTEN suppression of androgen receptor N- and C-terminal interactions and coactivator recruitment. Mol Endocrinol. 2009;23:213–25.

    Article  CAS  PubMed  Google Scholar 

  69. Karadag AS, Ertugrul DT, Tutal E, et al. Short-term isotretinoin treatment decreases insulin-like growth factor-1 and insulin-like growth factor binding protein-3 levels: does isotretinoin affect growth hormone physiology? Br J Dermatol. 2010;162:798–802.

    Article  CAS  PubMed  Google Scholar 

  70. Nelson AM, Gilliland KL, Cong Z, et al. 13-cis retinoic acid induces apoptosis and cell cycle arrest in human SEB-1 sebocytes. J Invest Dermatol. 2006;126:2178–89.

    Article  CAS  PubMed  Google Scholar 

  71. Lewis CA, Griffiths B, Santos CR, et al. Regulation of the SREBP transcription factors by mTORC1. Biochem Soc Trans. 2011;39:495–9.

    Article  CAS  PubMed  Google Scholar 

  72. Hamdi MM, Mutungi G. Dihydrotestosterone stimulates amino acid uptake and the expression of LAT2 in mouse skeletal muscle fibres through an ERK1/2-dependent mechanism. J Physiol. 2011;589:3623–40.

    Article  CAS  PubMed  Google Scholar 

  73. Melnik BC. Androgen abuse in the community. Curr Opin Endocrinol Diabetes Obes. 2009;16(3):218–23.

    Article  CAS  PubMed  Google Scholar 

  74. Rosenthal J, Angel A, Farkas AJ. Metabolic fate of leucine: a significant sterol precursor in adipose tissue and muscle. Am J Physiol. 1974;226:411–8.

    CAS  PubMed  Google Scholar 

  75. Wheatley VR. Cutaneous lipogenesis. Major pathways of carbon flow and possible interrelationships between the epidermis and sebaceous glands. J Invest Dermatol. 1974;62:245–56.

    Article  CAS  PubMed  Google Scholar 

  76. Cassidy DM, Lee CM, Laker MF, et al. Lipogenesis in isolated human sebaceous glands. FEBS Lett. 1986;200:173–6.

    Article  CAS  PubMed  Google Scholar 

  77. Plewig G, Fulton JE, Kligman AM. Cellular dynamics of comedo formation in acne vulgaris. Arch Dermatol Forsch. 1971;242:12–29.

    Article  CAS  PubMed  Google Scholar 

  78. Squarize CH, Castilho RM, Bugge TH, et al. Accelerated wound healing by mTOR activation in genetically defined mouse models. PLoS One. 2010;5(5):e10643.

    Article  PubMed  CAS  Google Scholar 

  79. Schroeder M, Zouboulis CC. All-trans-retinoic acid and 13-cis-retinoic acid: pharmacokinetics and biological activity in different cell culture models of human keratinocytes. Horm Metab Res. 2007;39:136–40.

    Article  CAS  PubMed  Google Scholar 

  80. Torrelo A, Hadj-Rabia S, Colmenero I, et al. Folliculocystic and collagen hamartoma of tuberosus sclerosis complex. J Am Acad Dermatol. 2011;66(4):617–21.

    Article  PubMed  Google Scholar 

  81. Melnik B. Acne and genetics. In: Zouboulis CC, Katsabas AD, Kligman AM, editors. Acne vulgaris and rosacea: pathogenesis and treatment. Heidelberg: Springer; 2012.

    Google Scholar 

  82. Chen W, Obermayer-Pietsch B, Hong JB, et al. Acne-associated syndromes: models for better understanding of acne pathogenesis. J Eur Acad Dermatol Venereol. 2011;25:637–46.

    Article  CAS  PubMed  Google Scholar 

  83. Pasquali R, Gambineri A. Insulin-sensitizing agents in women with polycystic ovary syndrome. Fertil Steril. 2006;86 Suppl 1:S28–9.

    Article  CAS  PubMed  Google Scholar 

  84. Kalender A, Selvaraj A, Kim SY, et al. Metformin, independent of AMPK, inhibits mTORC1 in a Rag GTPase-dependent manner. Cell Metab. 2010;11:390–401.

    Article  CAS  PubMed  Google Scholar 

  85. Dowling RJO, Zakikhani M, Fantus IG, et al. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res. 2007;67:10804–12.

    Article  CAS  PubMed  Google Scholar 

  86. Yang Y. Metformin for cancer prevention. Front Med. 2011;5:115–7.

    Article  PubMed  Google Scholar 

  87. Li D. Metformin as an antitumor agent in cancer prevention and treatment. J Diabetes. 2011;3(4):320–7.

    Article  CAS  PubMed  Google Scholar 

  88. McCarty MF. mTORC1 activity as a determinant of cancer risk—rationalizing the cancer-preventive effects of adiponectin, metformin, rapamycin, and low-protein vegan diets. Med Hypotheses. 2011;77:642–8.

    Article  CAS  PubMed  Google Scholar 

  89. Bo S, Ciccone G, Rosato R, et al. Cancer mortality reduction and metformin. A retrospective cohort study in type 2 diabetic patients. Diabetes Obes Metab. 2012;14(1):23–9.

    Article  CAS  PubMed  Google Scholar 

  90. Sutcliffe S, Giovannucci E, Isaacs WB, et al. Acne and risk of prostate cancer. Int J Cancer. 2007;121:2688–92.

    Article  CAS  PubMed  Google Scholar 

  91. Marques FZ, Markus MA, Morris BJ. Resveratrol: cellular actions of a potent natural chemical that confers a diversity of health benefits. Int J Biochem Cell Biol. 2009;41:2125–8.

    Article  CAS  PubMed  Google Scholar 

  92. Zhou H, Luo Y, Huang S. Updates of mTOR inhibitors. Anticancer Agents Med Chem. 2010;10:571–81.

    Article  CAS  PubMed  Google Scholar 

  93. Jiang H, Shang X, Wu H, et al. Resveratrol downregulates PI3K/Akt/mTOR signaling pathways in human U251 glioma cells. J Exp Ther Oncol. 2009;8:25–33.

    PubMed  Google Scholar 

  94. Brito PM, Devillard R, Negre-Salvayre A, et al. Resveratrol inhibits the mTOR mitogenic signaling evoked by oxidized LDL in smooth muscle cells. Atherosclerosis. 2009;205:126–34.

    Article  CAS  PubMed  Google Scholar 

  95. Lin JN, Lin VC, Rau KM, et al. Resveratrol modulates tumor cell proliferation and protein translation via SIRT1-dependent AMPK activation. J Agric Food Chem. 2010;58:1584–92.

    Article  CAS  PubMed  Google Scholar 

  96. Fröjdjö S, Cozzone D, Vidal H, et al. Resveratrol is a class IA phosphoinositide 3-kinase inhibitor. Biochem J. 2007;406:511–8.

    Article  CAS  Google Scholar 

  97. Docherty JJ, McEwen HA, Sweet TJ, et al. Resveratrol inhibition of propionibacterium acnes. J Antimicrob Chemother. 2007;59:1182–4.

    Article  CAS  PubMed  Google Scholar 

  98. Fabbrocini G, Staibano S, De Rosa G, et al. Resveratrol-containing gel for the treatment of acne vulgaris: a single-blind, vehicle-controlled, pilot study. Am J Clin Dermatol. 2011;12:133–41.

    Article  PubMed  Google Scholar 

  99. Reuter J, Wölfle U, Weckesser S, et al. Which plant for which skin disease? Part 1: Atopic dermatitis, psoriasis, acne, condyloma and herpes simplex. J Dtsch Dermatol Ges. 2010;8:788–96.

    PubMed  Google Scholar 

  100. Fowler Jr JF, Woolery-Lloyd H, Waldorf H, et al. Innovations in natural ingredients and their use in skin care. J Drugs Dermatol. 2010;9(6 Suppl):S72–81.

    PubMed  Google Scholar 

  101. Reuter J, Merfort I, Schempp CM. Botanicals in dermatology: an evidence-based review. Am J Clin Dermatol. 2010;11:247–67.

    PubMed  Google Scholar 

  102. Liao S. The medicinal action of androgens and green tea epigallocatechin gallate. Hong Kong Med J. 2001;7:369–74.

    CAS  PubMed  Google Scholar 

  103. Elsaie ML, Abdelhamid MF, Elsaaiee LT, et al. The efficacy of topical 2% green tea lotion in mild-to-moderate acne vulgaris. J Drugs Dermatol. 2009;8:358–64.

    PubMed  Google Scholar 

  104. Mahmood T, Akhtar N, Khan BA, et al. Outcomes of 3% green tea emulsion on skin sebum production in male volunteers. Bosn J Basic Med Sci. 2010;10:260–4.

    PubMed  Google Scholar 

  105. Zhang Q, Kelly AP, Wang L, et al. Green tea extract and (−)- epigallocatechin-3-gallate inhibit mast cell-stimulated type I collagen expression in keloid fibroblasts via blocking PI-3 K/Akt signaling pathways. J Invest Dermatol. 2006;126:2607–13.

    Article  CAS  PubMed  Google Scholar 

  106. Van Aller GS, Carson JD, Tang W, et al. Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor. Biochem Biophys Res Commun. 2011;406:194–9.

    Article  PubMed  CAS  Google Scholar 

  107. Guttman-Yassky E, Nograles KE, Krueger JG. Contrasting pathogenesis of atopic dermatitis and psoriasis—part I: clinical and pathologic concepts. J Allergy Clin Immunol. 2011;127:1110–8.

    Article  PubMed  Google Scholar 

  108. Boehncke WH, Sterry W. Psoriasis—a systemic inflammatory disorder: clinic, pathogenesis and therapeutic perspectives. J Dtsch Dermatol Ges. 2009;7:946–52.

    PubMed  Google Scholar 

  109. Gisondi P, Ferrazzi A, Girolomoni G. Metabolic comorbidities and psoriasis. Acta Dermatovenerol Croat. 2010;18:297–304.

    PubMed  Google Scholar 

  110. Farley E, Menter A. Psoriasis: comorbidities and associations. G Ital Dermatol Venereol. 2011;146:9–15.

    CAS  PubMed  Google Scholar 

  111. Sterry W, Strober BE, Menter A. International Psoriasis Council. Obesity in psoriasis: the metabolic, clinical and therapeutic implications. Report of an interdisciplinary conference and review. Br J Dermatol. 2007;157:649–55.

    Article  CAS  PubMed  Google Scholar 

  112. Gottlieb AB, Chamian F, Masud S, et al. TNF inhibition rapidly down-regulates multiple proinflammatory pathways in psoriasis plaques. J Immunol. 2005;175:2721–9.

    CAS  PubMed  Google Scholar 

  113. Johansen C, Funding AT, Otkjaer K, et al. Protein expression of TNF-α in psoriatic skin is regulated at a posttranscriptional level by MAPK-activated protein kinase 2. J Immunol. 2006;176:1431–8.

    CAS  PubMed  Google Scholar 

  114. Veale DJ, Ritchlin C, FitzGerald O. Immunopathology of psoriasis and psoriatic arthritis. Ann Rheum Dis. 2005;64 Suppl 2:226–9.

    Google Scholar 

  115. Quaglino P, Bergallo M, Ponti R, et al. Th1, Th2, Th17 and regulatory T cell pattern in psoriatic patients: modulation of cytokines and gene targets induced by etanercept treatment and correlation with clinical response. Dermatology. 2011;223(1):57–67.

    Article  CAS  PubMed  Google Scholar 

  116. Abraham RT, Wiederrecht GJ. Immunopharmacology of rapamycin. Annu Rev Immunol. 1996;14:483–510.

    Article  CAS  PubMed  Google Scholar 

  117. Ormerod AD, Shah SA, Copeland P, et al. Treatment of psoriasis with topical sirolimus: preclinical development and a randomized, double-blind trial. Br J Dermatol. 2005;152:758–64.

    Article  CAS  PubMed  Google Scholar 

  118. Reitamo S, Spuls P, Sassolas B, et al. Efficacy of sirolimus (rapamycin) administered concomitantly with a subtherapeutic dose of cyclosporin in the treatment of severe psoriasis: a randomized controlled trial. Br J Dermatol. 2001;145:438–45.

    Article  CAS  PubMed  Google Scholar 

  119. Frigerio E, Colombo MD, Franchi C, et al. Severe psoriasis treated with a new macrolide: everolimus. Br J Dermatol. 2007;156:372–4.

    Article  CAS  PubMed  Google Scholar 

  120. Paghdal KV, Schwartz RA. Sirolimus (rapamycin): from the soil of Easter Island to a bright future. J Am Acad Dermatol. 2007;57:1046–50.

    Article  PubMed  Google Scholar 

  121. Pierdominici M, Vacirca D, Delunardo F, et al. mTOR signaling and metabolic regulation of T cells: new potential therapeutic targets in autoimmune diseases. Curr Pharm Des. 2011;17(35):3888–97.

    Article  CAS  PubMed  Google Scholar 

  122. Powell JD, Delgoffe GM. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity. 2010;33:301–11.

    Article  CAS  PubMed  Google Scholar 

  123. Yang K, Neale G, Green DR, et al. The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function. Nat Immunol. 2011;12:888–97.

    Article  CAS  PubMed  Google Scholar 

  124. Young CN, Koepke JI, Terlecky LJ, et al. Reactive oxygen species in tumor necrosis factor-alpha-activated primary human keratinocytes: implications for psoriasis and inflammatory skin disease. J Invest Dermatol. 2008;128:2606–14.

    Article  CAS  PubMed  Google Scholar 

  125. Suganami T, Ogawa Y. Adipose tissue macrophages: their role in adipose tissue remodeling. J Leukoc Biol. 2010;88:33–9.

    Article  CAS  PubMed  Google Scholar 

  126. Lee DF, Kuo HP, Chen CT, et al. IKKβ suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell. 2007;130:440–55.

    Article  CAS  PubMed  Google Scholar 

  127. Hamdy O, Porramatikul S, Al-Ozairi E. Metabolic obesity: the paradox between visceral and subcutaneous fat. Curr Diabetes Rev. 2006;2:367–73.

    Article  PubMed  Google Scholar 

  128. Forsythe LK, Wallace JM, Livingstone MB. Obesity and inflammation: the effects of weight loss. Nutr Res Rev. 2008;21:117–33.

    Article  CAS  PubMed  Google Scholar 

  129. Gisondi P, Del Giglio M, Di Francesco V, et al. Weight loss improves the response of obese patients with moderate-to-severe chronic plaque psoriasis to low-dose cyclosporine therapy: a randomized, controlled, investigator-blinded clinical trial. Am J Clin Nutr. 2008;88:1242–7.

    CAS  PubMed  Google Scholar 

  130. Tremblay F, Krebs M, Dombrowski L, et al. Overactivation of S6 Kinase 1 as a cause of human insulin resistance during increased amino acid availability. Diabetes. 2005;54:2674–84.

    Article  CAS  PubMed  Google Scholar 

  131. Greer FR, Sicherer SH, Burks AW. Effects of early nutritional interventions on the development of atopic disease in infants and children: the role of maternal dietary restriction, breastfeeding, timing of introduction of complementary foods, and hydrolyzed formulas. Pediatrics. 2008;121:183–91.

    Article  PubMed  Google Scholar 

  132. Miraglia del Giudice M, Decimo F, Leonardi S, et al. Immune dysregulation in atopic dermatitis. Allergy Asthma Proc. 2006;27:451–5.

    Article  CAS  PubMed  Google Scholar 

  133. Rahman S, Collins M, Williams CM, et al. The pathology and immunology of atopic dermatitis. Inflamm Allergy Drug Targets. 2011;10(6):486–96.

    Article  CAS  PubMed  Google Scholar 

  134. Shimizu N, Yoshikawa N, Ito N, et al. Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metab. 2011;13:170–82.

    Article  CAS  PubMed  Google Scholar 

  135. Brugarolas J, Lei K, Hurley RL, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004;18:2893–904.

    Article  CAS  PubMed  Google Scholar 

  136. DeYoung MP, Horak P, Sofer A, et al. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev. 2008;22:239–51.

    Article  CAS  PubMed  Google Scholar 

  137. Wang H, Kubica N, Ellisen LW, et al. Dexamethasone represses signaling through the mammalian target of rapamycinin muscle cells by enhancing expression of REDD1. J Biol Chem. 2006;281:39128–34.

    Article  CAS  PubMed  Google Scholar 

  138. Gray S, Wang B, Orihuela Y, et al. Regulation of gluconeogenesis by Krüppel-like factor 15. Cell Metab. 2007;5:305–12.

    Article  CAS  PubMed  Google Scholar 

  139. Pearce EL. Metabolism in T cell activation and differentiation. Curr Opin Immunol. 2010;22:314–20.

    Article  CAS  PubMed  Google Scholar 

  140. Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol. 2005;5:844–52.

    Article  CAS  PubMed  Google Scholar 

  141. Jones RG, Thompson CB. Revving the engine: signal transduction fuels T cell activation. Immunity. 2007;27:173–8.

    Article  CAS  PubMed  Google Scholar 

  142. Fumarola C, La Monica S, Guidotti GG. Amino acid signaling through the mammalian target of rapamycin (mTOR) pathway: role of glutamine and of cell shrinkage. J Cell Physiol. 2005;204:155–65.

    Article  CAS  PubMed  Google Scholar 

  143. Hidayat S, Yoshino K, Tokunaga C, et al. Inhibition of amino acid-mTOR signaling by a leucine derivative induces G1 arrest in Jurkat cells. Biochem Biophys Res Commun. 2003;301:417–23.

    Article  CAS  PubMed  Google Scholar 

  144. Zheng Y, Delgoffe GM, Meyer CF, et al. Anergic T cells are metabolically anergic. J Immunol. 2009;183:6095–101.

    Article  CAS  PubMed  Google Scholar 

  145. Powell JD, Lerner CG, Schwartz RH. Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation. J Immunol. 1999;162:2775–84.

    CAS  PubMed  Google Scholar 

  146. Cham CM, Driessens G, O’Keefe JP, et al. Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells. Eur J Immunol. 2008;38:2438–50.

    Article  CAS  PubMed  Google Scholar 

  147. Cobbold SP, Adams E, Farquhar CA, et al. Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc Natl Acad Sci U S A. 2009;106:12055–60.

    Article  CAS  PubMed  Google Scholar 

  148. Lee K, Gudapati P, Dragovic S, et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity. 2010;32:743–53.

    Article  CAS  PubMed  Google Scholar 

  149. Noh SU, Cho EA, Kim HO, et al. Epigallocatechin-3-gallate improves dermatophagoides pteronissinus extract-induced atopic dermatitis-like skin lesions in NC/Nga mice by suppressing macrophage migration inhibitory factor. Int Immunopharmacol. 2008;8:1172–82.

    Article  CAS  PubMed  Google Scholar 

  150. Nommsen LA, Lovelady CA, Heinig MJ, et al. Determinants of energy, protein, lipid, and lactose concentrations in human milk during the first 12 mo of lactation: the DARLING Study. Am J Clin Nutr. 1991;53:457–65.

    CAS  PubMed  Google Scholar 

  151. Bounous G, Kongshavn PA, Taveroff A, et al. Evolutionary traits in human milk proteins. Med Hypotheses. 1988;27(2):133–40.

    Article  CAS  PubMed  Google Scholar 

  152. Gordon HH, Levin SZ, McNamara H. Feeding of premature infants: a comparison of human and cow’s milk. Am J Dis Child. 1947;73:442–52.

    CAS  PubMed  Google Scholar 

  153. Babson SG, Bramhill JL. Diet and growth in the premature infant. The effect of different dietary intakes of ash-electrolyte and protein on weight gain and linear growth. J Pediatr. 1969;74:890–900.

    Article  CAS  PubMed  Google Scholar 

  154. Davis TA, Nguyen HV, Garcia-Bravo R, et al. Amino acid composition of human milk is not unique. J Nutr. 1994;124:1126–32.

    CAS  PubMed  Google Scholar 

  155. Koletzko B, von Kries R, Closa R, et al. Lower protein in infant formula is associated with lower weight up to age 2 y: a randomized clinical trial. Am J Clin Nutr. 2009;89:1836–45.

    Article  CAS  PubMed  Google Scholar 

  156. Koletzko B, von Kries R, Monasterola RC, et al. Can infant feeding choices modulate later obesity risk? Am J Clin Nutr. 2009;89:1502S–8.

    Article  CAS  PubMed  Google Scholar 

  157. Socha P, Grote V, Gruszfeld D, et al. Milk protein intake, the metabolic-endocrine response, and growth in infancy: data from a randomized clinical trial. Am J Clin Nutr. 2011;94(6 Suppl):1776S–84.

    Article  CAS  PubMed  Google Scholar 

  158. Kimata H, Fujimoto M. Growth hormone and insulin-like growth factor I induce immunoglobulin (Ig)E and IgG4 production by human B cells. J Exp Med. 1994;180:727–32.

    Article  CAS  PubMed  Google Scholar 

  159. Ege MJ, Herzum I, Büchele G, et al. Prenatal exposure to a farm environment modifies atopic sensitization at birth. J Allergy Clin Immunol. 2008;122:407–12.

    Article  PubMed  Google Scholar 

  160. Miyake Y, Sasaki S, Tanaka K, et al. Consumption of vegetables, fruit, and antioxidants during pregnancy and wheeze and eczema in infants. Allergy. 2010;65:758–65.

    Article  CAS  PubMed  Google Scholar 

  161. von Mutius E, Schwartz J, Neas LM, et al. Relation of body mass index to asthma and atopy in children: the National Health and Nutrition Examination Study III. Thorax. 2001;56:835–8.

    Article  Google Scholar 

  162. Castro-Rogriguez JA, Holberg CJ, Morgan WJ, et al. Increased incidence of asthma-like symptoms in girls who become overweight or obese during the school years. Am J Respir Crit Care Med. 2001;6:1344–9.

    Google Scholar 

  163. Huang SL, Shiao G, Chou P. Association between body mass index and allergy in teenage girls in Taiwan. Clin Exp Allergy. 1999;29:323–9.

    Article  CAS  PubMed  Google Scholar 

  164. Gorgievska-Sukarovska B, Lipozenčić J. Obesity and allergic diseases. Acta Dermatovenerol Croat. 2008;16:231–5.

    PubMed  Google Scholar 

  165. Beevers CS, Chen L, Liu L, et al. Curcumin disrupts the mammalian target of rapamycin-raptor complex. Cancer Res. 2009;69:1000–8.

    Article  CAS  PubMed  Google Scholar 

  166. Anastasius N, Boston S, Lacey M, et al. Evidence that low-dose, long- term genistein treatment inhibits oestradiol-stimulated growth in MCF-7 cells by down-regulation of the PI3-kinase/Akt signalling pathway. J Steroid Biochem Mol Biol. 2009;116:50–5.

    Article  CAS  PubMed  Google Scholar 

  167. Nakamura Y, Yogosawa S, Izutani Y, et al. A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy. Mol Cancer. 2009;8:100.

    Article  PubMed  CAS  Google Scholar 

  168. Kong D, Banerjee S, Huang W, et al. Mammalian target of rapamycin repression by 3,3-diindolylmethane inhibits invasion and angiogenesis in platelet-derived growth factor-D-overexpressing PC3 cells. Cancer Res. 2008;68:1927–34.

    Article  CAS  PubMed  Google Scholar 

  169. Reinke A, Chen JC, Aronova S, et al. Caffeine targets TOR complex I and provides evidence for a regulatory link between the FRB and kinase domains of Tor1p. J Biol Chem. 2006;281:31616–26.

    Article  CAS  PubMed  Google Scholar 

  170. Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol. 2008;75:787–809.

    Article  CAS  PubMed  Google Scholar 

  171. Johnson SM, Gulhati P, Arrieta I, et al. Curcumin inhibits proliferation of colorectal carcinoma by modulating Akt/mTOR signaling. Anticancer Res. 2009;29:3185–90.

    CAS  PubMed  Google Scholar 

  172. Beevers CS, Li F, Liu L, et al. Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells. Int J Cancer. 2006;119:757–64.

    Article  CAS  PubMed  Google Scholar 

  173. Huang CH, Tsai SJ, Wang YJ, et al. EGCG inhibits protein synthesis, lipogenesis, and cell cycle progression through activation of AMPK in p53 positive and negative human hepatoma cells. Mol Nutr Food Res. 2009;53:1156–65.

    Article  CAS  PubMed  Google Scholar 

  174. Bartholome A, Kampkötter A, Tanner S, et al. Epigallocatechin gallate-induced modulation of FoxO signaling in mammalian cells and C. elegans: FoxO stimulation is masked via PI3K/Akt activation by hydrogen peroxide formed in cell culture. Arch Biochem Biophys. 2010;501:58–64.

    Article  CAS  PubMed  Google Scholar 

  175. Rezai-Zadeh K, Shytle D, Sun N, et al. Green tea epigallocatechin-3- gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci. 2005;25:8807–14.

    Article  CAS  PubMed  Google Scholar 

  176. Mandel SA, Amit T, Weinreb O, et al. Simultaneous manipulation of multiple brain targets by green tea catechins: a potential neuroprotective strategy for Alzheimer and Parkinson diseases. CNS Neurosci Ther. 2008;14:352–65.

    Article  CAS  PubMed  Google Scholar 

  177. Mandel SA, Amit T, Weinreb O, et al. Understanding the broad-spectrum neuroprotective action profile of green tea polyphenols in aging and neurodegenerative diseases. J Alzheimers Dis. 2011;25:187–208.

    CAS  PubMed  Google Scholar 

  178. Queen BL, Tollefsbol TO. Polyphenols and aging. Curr Aging Sci. 2010;3:34–42.

    CAS  PubMed  Google Scholar 

  179. Rains TM, Agarwal S, Maki KC. Antiobesity effects of green tea catechins: a mechanistic review. J Nutr Biochem. 2011;22:1–7.

    Article  CAS  PubMed  Google Scholar 

  180. Szkudelska K, Szkudelski T. Resveratrol, obesity and diabetes. Eur J Pharmacol. 2010;635:1–8.

    Article  CAS  PubMed  Google Scholar 

  181. Baile CA, Yang JY, Rayalam S, Hartzell DL, et al. Effect of resveratrol on fat mobilization. Ann N Y Acad Sci. 2011;1215:40–7.

    Article  CAS  PubMed  Google Scholar 

  182. Yang JY, Della-Fera MA, Rayalam S, et al. Enhanced inhibition of adipogenesis and induction of apoptosis in 3 T3-L1 adipocytes with combinations of resveratrol and quercetin. Life Sci. 2008;82:1032–9.

    Article  CAS  PubMed  Google Scholar 

  183. Andersen C, Rayalam S, Della-Fera MA, et al. Phytochemicals and adipogenesis. Biofactors. 2010;36:415–22.

    Article  CAS  PubMed  Google Scholar 

  184. Szkudelski T, Szkudelska K. Anti-diabetic effects of resveratrol. Ann N Y Acad Sci. 2011;1215:34–9.

    Article  CAS  PubMed  Google Scholar 

  185. Beaudeux JL, Nivet-Antoine V, Giral P. Resveratrol: a relevant pharmacological approach for the treatment of metabolic syndrome? Curr Opin Clin Nutr Metab Care. 2010;13:729–36.

    Article  CAS  PubMed  Google Scholar 

  186. Petrovski G, Gurusamy N, Das DK. Resveratrol in cardiovascular health and disease. Ann N Y Acad Sci. 2011;1215:22–33.

    Article  PubMed  CAS  Google Scholar 

  187. Ndiaye M, Kumar R, Ahmad N. Resveratrol in cancer management: where are we and where we go from here? Ann N Y Acad Sci. 2011;1215:144–9.

    Article  CAS  PubMed  Google Scholar 

  188. Shukla Y, Singh R. Resveratrol and cellular mechanisms of cancer prevention. Ann N Y Acad Sci. 2011;1215:1–8.

    Article  CAS  PubMed  Google Scholar 

  189. Albani D, Polito L, Signorini A, et al. Neuroprotective properties of resveratrol in different neurodegenerative disorders. Biofactors. 2010;36:370–6.

    Article  CAS  PubMed  Google Scholar 

  190. Richard T, Pawlus AD, Iglésias ML, et al. Neuroprotective properties of resveratrol and derivatives. Ann N Y Acad Sci. 2011;1215:103–8.

    Article  CAS  PubMed  Google Scholar 

  191. Agarwal B, Baur JA. Resveratrol and life extension. Ann N Y Acad Sci. 2011;1215:138–43.

    Article  CAS  PubMed  Google Scholar 

  192. Lin YG, Kunnumakkara AB, Nair A, et al. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clin Cancer Res. 2007;13:3423–30.

    Article  CAS  PubMed  Google Scholar 

  193. Banerjee S, Kong D, Wang Z, et al. Attenuation of multi-targeted proliferation-linked signaling by 3,3′-diindolylmethane (DIM): from bench to clinic. Mutat Res. 2011;728:47–66.

    Article  CAS  PubMed  Google Scholar 

  194. Eto I. Nutritional and chemopreventive anti-cancer agents up-regulate expression of p27Kip1, a cyclin-dependent kinase inhibitor, in mouse JB6 epidermal and human MCF7, MDA-MB-321 and AU565 breast cancer cells. Cancer Cell Int. 2006;6:20.

    Article  PubMed  CAS  Google Scholar 

  195. Yan GR, Xiao CL, He GW, et al. Global phosphoproteomic effects of natural tyrosine kinase inhibitor, genistein, on signaling pathways. Proteomics. 2010;10:976–86.

    CAS  PubMed  Google Scholar 

  196. Puli S, Jain A, Lai JC, et al. Effect of combination treatment of rapamycin and isoflavones on mTOR pathway in human glioblastoma (U87) cells. Neurochem Res. 2010;35:986–93.

    Article  CAS  PubMed  Google Scholar 

  197. Butt MS, Sultan MT. Coffee and its consumption: benefits and risks. Crit Rev Food Sci Nutr. 2011;51:363–73.

    Article  CAS  PubMed  Google Scholar 

  198. Foukas LC, Daniele N, Ktori C, et al. Direct effects of caffeine and theophylline on p110delta and other phosphoinositide 3-kinases. Differential effects on lipid kinase and protein kinase activities. J Biol Chem. 2002;277:37124–30.

    Article  CAS  PubMed  Google Scholar 

  199. Kudchodkar SB, Yu Y, Maguire TG, et al. Human cytomegalovirus infection alters the substrate specificities and rapamycin sensitivities of raptor- and rictor-containing complexes. Proc Natl Acad Sci U S A. 2006;103:14182–7.

    Article  CAS  PubMed  Google Scholar 

  200. Saiki S, Sasazawa Y, Imamichi Y, et al. Caffeine induces apoptosis by enhancement of autophagy via PI3K/Akt/mTOR/p70S6K inhibition. Autophagy. 2011;7:176–87.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodo C. Melnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Melnik, B.C. (2013). Western Diet-Mediated mTORC1-Signaling in Acne, Psoriasis, Atopic Dermatitis, and Related Diseases of Civilization: Therapeutic Role of Plant-Derived Natural mTORC1 Inhibitors. In: Watson, R., Zibadi, S. (eds) Bioactive Dietary Factors and Plant Extracts in Dermatology. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-167-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-167-7_37

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-166-0

  • Online ISBN: 978-1-62703-167-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics