Skip to main content

Mesenchymal Stem Cells in Bone and Cartilage Regeneration

  • Chapter
  • First Online:
Regenerative Medicine and Cell Therapy

Abstract

Most damage to bone and cartilage, as well as bone and cartilage diseases, is curable by routine medical procedures. However, some are either incurable or difficult to cure. Often these damages or diseases result in large-scale tissue loss. Treatment of these conditions is the subject of regenerative medicine. One valuable regenerative medicine tool is stem cell-based therapy. The use of mesenchymal stem cells (MSCs) in bone and cartilage regeneration is the subject of the present chapter, which is organized into three main parts. First, bone and cartilage structure, their repair capacity, and current therapy will be briefly described. In the second section, the main features of MSCs that render them appropriate cell candidates for bone and cartilage regeneration will be discussed, followed by a brief description of scaffolds and growth factors that may accompany MSCs in order to enhance their regenerative effects. Finally, in the third section, some examples of the application of MSCs in bone and cartilage regeneration will be explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rodan GA (1992) Introduction to bone biology. Bone 13(Suppl 1):S3–S6

    PubMed  CAS  Google Scholar 

  2. Green D, Walsh D, Mann S, Oreffo RO (2002) The potential of biomimesis in bone tissue engineering: lessons from the design and synthesis of invertebrate skeletons. Bone 30(6):810–815

    PubMed  CAS  Google Scholar 

  3. Posner AS (1985) The mineral of bone. Clin Orthop Relat Res 200:87–99

    PubMed  CAS  Google Scholar 

  4. Rey C, Kim HM, Gerstenfeld L, Glimcher MJ (1995) Structural and chemical characteristics and maturation of the calcium–phosphate crystals formed during the calcification of the organic matrix synthesized by chicken osteoblasts in cell culture. J Bone Miner Res 10(10):1577–1588

    PubMed  CAS  Google Scholar 

  5. Young MF, Kerr JM, Ibaraki K, Heegaard AM, Robey PG (1992) Structure, expression, and regulation of the major noncollagenous matrix proteins of bone. Clin Orthop Relat Res 281:275–294

    PubMed  Google Scholar 

  6. Robey PG (1996) Vertebrate mineralized matrix proteins: structure and function. Connect Tissue Res 35(1–4):131–136

    PubMed  CAS  Google Scholar 

  7. Maurer P, Hohenester E, Engel J (1996) Extracellular calcium-binding proteins. Curr Opin Cell Biol 8(5):609–617

    PubMed  CAS  Google Scholar 

  8. Sasaki T, Hohenester E, Gohring W, Timpl R (1998) Crystal structure and mapping by site-directed mutagenesis of the collagen-binding epitope of an activated form of BM-40/SPARC/osteonectin. EMBO J 17(6):1625–1634

    PubMed  CAS  Google Scholar 

  9. de Oliveira PT, Nanci A (2004) Nanotexturing of titanium-based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells. Biomaterials 25(3):403–413

    PubMed  Google Scholar 

  10. Terai K, Takano-Yamamoto T, Ohba Y, Hiura K, Sugimoto M, Sato M, Kawahata H, Inaguma N, Kitamura Y, Nomura S (1999) Role of osteopontin in bone remodeling caused by mechanical stress. J Bone Miner Res 14(6):839–849

    PubMed  CAS  Google Scholar 

  11. Ducy P, Geoffroy V, Karsenty G (1996) Study of osteoblast-specific expression of one mouse osteocalcin gene: characterization of the factor binding to OSE2. Connect Tissue Res 35(1–4):7–14

    PubMed  CAS  Google Scholar 

  12. Moore KL (1992) Clinically oriented anatomy, 3rd edn. Williams & Wilkins, Baltimore

    Google Scholar 

  13. Junqueira LCU, Carneiro J, Contopoulos AN (1975) Basic histology. In: A concise medical library for practitioner and student. p. v. Lange Medical Publications, Los Altos

    Google Scholar 

  14. Gartner LP, Hiatt JL (2007) Color textbook of histology, 3rd edn. Saunders/Elsevier, Philadelphia

    Google Scholar 

  15. Braddock M, Houston P, Campbell C, Ashcroft P (2001) Born again bone: tissue engineering for bone repair. News Physiol Sci 16:208–213

    PubMed  CAS  Google Scholar 

  16. Burchardt H, Enneking WF (1978) Transplantation of bone. Surg Clin North Am 58(2):403–427

    PubMed  CAS  Google Scholar 

  17. Gazdag AR, Lane JM, Glaser D, Forster RA (1995) Alternatives to autogenous bone graft: efficacy and indications. J Am Acad Orthop Surg 3(1):1–8

    PubMed  Google Scholar 

  18. Suh H (2000) Tissue restoration, tissue engineering and regenerative medicine. Yonsei Med J 41(6):681–684

    PubMed  CAS  Google Scholar 

  19. Ikada Y (2006) Challenges in tissue engineering. J R Soc Interface 3(10):589–601

    PubMed  CAS  Google Scholar 

  20. Damien CJ, Parsons JR (1991) Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater 2(3):187–208

    PubMed  CAS  Google Scholar 

  21. Finkemeier CG (2002) Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am 84-A(3):454–464

    Google Scholar 

  22. Lanza RP, Butler DH, Borland KM, Staruk JE, Faustman DL, Solomon BA, Muller TE, Rupp RG, Maki T, Monaco AP et al (1991) Xenotransplantation of canine, bovine, and porcine islets in diabetic rats without immunosuppression. Proc Natl Acad Sci U S A 88(24):11100–11104

    PubMed  CAS  Google Scholar 

  23. Butler D (1998) Poll reveals backing for xenotransplants. Nature 391(6665):315

    PubMed  CAS  Google Scholar 

  24. Zhang P, Hamamura K, Yokota H (2008) A brief review of bone adaptation to unloading. Genomics Proteomics Bioinformatics 6(1):4–7

    PubMed  CAS  Google Scholar 

  25. Jacobs JJ, Sumner DR, Galante JO (1993) Mechanisms of bone loss associated with total hip replacement. Orthop Clin North Am 24(4):583–590

    PubMed  CAS  Google Scholar 

  26. Buckwalter JA (1983) Articular cartilage. Instr Course Lect 32:349–370

    PubMed  CAS  Google Scholar 

  27. Poole CA (1997) Articular cartilage chondrons: form, function and failure. J Anat 191(Pt 1):1–13

    PubMed  Google Scholar 

  28. Bhosale AM, Richardson JB (2008) Articular cartilage: structure, injuries and review of management. Br Med Bull 87:77–95

    PubMed  Google Scholar 

  29. Eyre D (2002) Collagen of articular cartilage. Arthritis Res 4(1):30–35

    PubMed  CAS  Google Scholar 

  30. Buckwalter JA, Mankin HJ (1998) Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect 47:477–486

    PubMed  CAS  Google Scholar 

  31. Darling EM, Hu JC, Athanasiou KA (2004) Zonal and topographical differences in articular cartilage gene expression. J Orthop Res 22(6):1182–1187

    PubMed  CAS  Google Scholar 

  32. Becerra J, Andrades JA, Guerado E, Zamora-Navas P, Lopez-Puertas JM, Reddi AH (2010) Articular cartilage: structure and regeneration. Tissue Eng Part B Rev 16(6):617–627

    PubMed  CAS  Google Scholar 

  33. Dhinsa BS, Adesida AB (2012) Current clinical therapies for cartilage repair, their limitation and the role of stem cells. Curr Stem Cell Res Ther 7(2):143–148

    PubMed  CAS  Google Scholar 

  34. Frenkel SR, Di Cesare PE (1999) Degradation and repair of articular cartilage. Front Biosci 4:D671–D685

    PubMed  CAS  Google Scholar 

  35. Mithoefer K, McAdams TR, Scopp JM, Mandelbaum BR (2009) Emerging options for treatment of articular cartilage injury in the athlete. Clin Sports Med 28(1):25–40

    PubMed  Google Scholar 

  36. Buckwalter JA, Lohmander S (1994) Operative treatment of osteoarthrosis. Current practice and future development. J Bone Joint Surg Am 76(9):1405–1418

    PubMed  CAS  Google Scholar 

  37. Hangody L, Kish G, Karpati Z, Udvarhelyi I, Szigeti I, Bely M (1998) Mosaicplasty for the treatment of articular cartilage defects: application in clinical practice. Orthopedics 21(7):751–756

    PubMed  CAS  Google Scholar 

  38. Rose T, Craatz S, Hepp P, Raczynski C, Weiss J, Josten C, Lill H (2005) The autologous osteochondral transplantation of the knee: clinical results, radiographic findings and histological aspects. Arch Orthop Trauma Surg 125(9):628–637

    PubMed  Google Scholar 

  39. Williams RJ 3rd, Ranawat AS, Potter HG, Carter T, Warren RF (2007) Fresh stored allografts for the treatment of osteochondral defects of the knee. J Bone Joint Surg Am 89(4):718–726

    PubMed  Google Scholar 

  40. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331(14):889–895

    PubMed  CAS  Google Scholar 

  41. Schnabel M, Marlovits S, Eckhoff G, Fichtel I, Gotzen L, Vecsei V, Schlegel J (2002) Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthr Cartil 10(1):62–70

    PubMed  CAS  Google Scholar 

  42. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3(4):393–403

    PubMed  CAS  Google Scholar 

  43. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8(4):315–317

    PubMed  CAS  Google Scholar 

  44. Robertson EJ (1997) Derivation and maintenance of embryonic stem cell cultures. Methods Mol Biol 75:173–184. doi:10.1385/0-89603-441-0:173

    PubMed  CAS  Google Scholar 

  45. Woll NL, Heaney JD, Bronson SK (2006) Osteogenic nodule formation from single embryonic stem cell-derived progenitors. Stem Cells Dev 15(6):865–879

    PubMed  CAS  Google Scholar 

  46. Nakagawa T, Lee SY, Reddi AH (2009) Induction of chondrogenesis from human embryonic stem cells without embryoid body formation by bone morphogenetic protein 7 and transforming growth factor beta 1. Arthritis Rheum 60(12):3686–3692

    PubMed  CAS  Google Scholar 

  47. Daar AS, Bhatt A, Court E, Singer PA (2004) Stem cell research and transplantation: science leading ethics. Transplant Proc 36(8):2504–2506

    PubMed  CAS  Google Scholar 

  48. Knoepfler PS (2009) Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells 27(5):1050–1056. doi:10.1002/stem.37

    PubMed  CAS  Google Scholar 

  49. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    PubMed  CAS  Google Scholar 

  50. Noth U, Osyczka AM, Tuli R, Hickok NJ, Danielson KG, Tuan RS (2002) Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J Orthop Res 20(5):1060–1069

    PubMed  Google Scholar 

  51. De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44(8):1928–1942

    PubMed  Google Scholar 

  52. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228

    PubMed  CAS  Google Scholar 

  53. Bosch P, Musgrave DS, Lee JY, Cummins J, Shuler T, Ghivizzani TC, Evans T, Robbins TD (2000) Huard: osteoprogenitor cells within skeletal muscle. J Orthop Res 18(6):933–944

    PubMed  CAS  Google Scholar 

  54. Nakahara H, Goldberg VM, Caplan AI (1991) Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. J Orthop Res 9(4):465–476

    PubMed  CAS  Google Scholar 

  55. Young HE, Steele TA, Bray RA, Hudson J, Floyd JA, Hawkins K, Thomas K, Austin T, Edwards C, Cuzzourt J, Duenzl M, Lucas PA, Black AC Jr (2001) Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec 264(1):51–62

    PubMed  CAS  Google Scholar 

  56. He Q, Wan C, Li G (2007) Concise review: multipotent mesenchymal stromal cells in blood. Stem Cells 25(1):69–77

    PubMed  CAS  Google Scholar 

  57. Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9):792–806

    PubMed  CAS  Google Scholar 

  58. Baghaban Eslaminejad M, Jahangir S, Aghdami N (2011) Mesenchymal stem cells from murine amniotic fluid as a model for preclinical investigation. Arch Iran Med 14(2):96–103

    PubMed  Google Scholar 

  59. Karahuseyinoglu S, Cinar O, Kilic E, Kara F, Akay GG, Demiralp DO, Tukun A, Uckan D, Can A (2007) Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 25(2):319–331

    PubMed  CAS  Google Scholar 

  60. Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4(5):267–274

    PubMed  CAS  Google Scholar 

  61. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11):2739–2749

    PubMed  CAS  Google Scholar 

  62. Javazon EH, Beggs KJ, Flake AW (2004) Mesenchymal stem cells: paradoxes of passaging. Exp Hematol 32(5):414–425

    PubMed  CAS  Google Scholar 

  63. DelaRosa O, Lombardo E, Beraza A, Mancheno-Corvo P, Ramirez C, Menta R, Rico L, Camarillo E, Garcia L, Abad JL, Trigueros C, Delgado M, Buscher D (2009) Requirement of IFN-gamma-mediated indoleamine 2,3-dioxygenase expression in the modulation of lymphocyte proliferation by human adipose-derived stem cells. Tissue Eng Part A 15(10):2795–2806

    PubMed  CAS  Google Scholar 

  64. Ryan JM, Barry F, Murphy JM, Mahon BP (2007) Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol 149(2):353–363

    PubMed  CAS  Google Scholar 

  65. Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, Risso M, Gualandi F, Mancardi GL, Pistoia V, Uccelli A (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107(1):367–372

    PubMed  CAS  Google Scholar 

  66. Asari S, Itakura S, Ferreri K, Liu CP, Kuroda Y, Kandeel F, Mullen Y (2009) Mesenchymal stem cells suppress B-cell terminal differentiation. Exp Hematol 37(5):604–615

    PubMed  CAS  Google Scholar 

  67. Ramasamy R, Fazekasova H, Lam EW, Soeiro I, Lombardi G, Dazzi F (2007) Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation 83(1):71–76

    PubMed  Google Scholar 

  68. Zhang W, Ge W, Li C, You S, Liao L, Han Q, Deng W, Zhao RC (2004) Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev 13(3):263–271

    PubMed  CAS  Google Scholar 

  69. Fox JM, Chamberlain G, Ashton BA, Middleton J (2007) Recent advances into the understanding of mesenchymal stem cell trafficking. Br J Haematol 137(6):491–502

    PubMed  CAS  Google Scholar 

  70. Granero-Molto F, Weis JA, Miga MI, Landis B, Myers TJ, O’Rear L, Longobardi L, Jansen ED, Mortlock DP, Spagnoli A (2009) Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells 27(8):1887–1898

    PubMed  CAS  Google Scholar 

  71. Granero-Molto F, Weis JA, Longobardi L, Spagnoli A (2008) Role of mesenchymal stem cells in regenerative medicine: application to bone and cartilage repair. Expert Opin Biol Ther 8(3):255–268

    PubMed  CAS  Google Scholar 

  72. Lapidot T, Dar A, Kollet O (2005) How do stem cells find their way home? Blood 106(6):1901–1910

    PubMed  CAS  Google Scholar 

  73. Habraken WJ, Wolke JG, Jansen JA (2007) Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev 59(4–5):234–248

    PubMed  CAS  Google Scholar 

  74. Gladstone HB, McDermott MW, Cooke DD (1995) Implants for cranioplasty. Otolaryngol Clin North Am 28(2):381–400

    PubMed  CAS  Google Scholar 

  75. Lee SH, Shin H (2007) Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev 59(4–5):339–359

    PubMed  CAS  Google Scholar 

  76. Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346

    PubMed  CAS  Google Scholar 

  77. Eslaminejad MB, Mirzadeh H, Mohamadi Y, Nickmahzar A (2007) Bone differentiation of marrow-derived mesenchymal stem cells using beta-tricalcium phosphate–alginate–gelatin hybrid scaffolds. J Tissue Eng Regen Med 1(6):417–424

    PubMed  CAS  Google Scholar 

  78. Zandi M, Mirzadeh H, Mayer C, Urch H, Eslaminejad MB, Bagheri F, Mivehchi H (2010) Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells. J Biomed Mater Res A 92(4):1244–1255

    PubMed  Google Scholar 

  79. Wang M (2006) Composite scaffolds for bone tissue engineering. Am J Biochem Biotechnol 2(2):80–84

    CAS  Google Scholar 

  80. Chajra H, Rousseau CF, Cortial D, Ronziere MC, Herbage D, Mallein-Gerin F, Freyria AM (2008) Collagen-based biomaterials and cartilage engineering. Application to osteochondral defects. Biomed Mater Eng 18(1 Suppl):S33–S45

    Google Scholar 

  81. Wakitani S, Goto T, Young RG, Mansour JM, Goldberg VM, Caplan AI (1998) Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel. Tissue Eng 4(4):429–444

    PubMed  CAS  Google Scholar 

  82. Knudson W, Casey B, Nishida Y, Eger W, Kuettner KE, Knudson CB (2000) Hyaluronan oligosaccharides perturb cartilage matrix homeostasis and induce chondrocytic chondrolysis. Arthritis Rheum 43(5):1165–1174

    PubMed  CAS  Google Scholar 

  83. Carranza-Bencano A, Armas-Padron JR, Gili-Miner M, Lozano MA (2000) Carbon fiber implants in osteochondral defects of the rabbit patella. Biomaterials 21(21):2171–2176

    PubMed  CAS  Google Scholar 

  84. Defrere J, Franckart A (1992) Teflon/polyurethane arthroplasty of the knee: the first 2 years preliminary clinical experience in a new concept of artificial resurfacing of full thickness cartilage lesions of the knee. Acta Chir Belg 92(5):217–227

    PubMed  CAS  Google Scholar 

  85. Ferretti M, Marra KG, Kobayashi K, Defail AJ, Chu CR (2006) Controlled in vivo degradation of genipin crosslinked polyethylene glycol hydrogels within osteochondral defects. Tissue Eng 12(9):2657–2663

    PubMed  CAS  Google Scholar 

  86. Wang X, Grogan SP, Rieser F, Winkelmann V, Maquet V, Berge ML, Mainil-Varlet P (2004) Tissue engineering of biphasic cartilage constructs using various biodegradable scaffolds: an in vitro study. Biomaterials 25(17):3681–3688

    PubMed  CAS  Google Scholar 

  87. Sharma B, Williams CG, Khan M, Manson P, Elisseeff JH (2007) In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel. Plast Reconstr Surg 119(1):112–120

    PubMed  CAS  Google Scholar 

  88. Yoon BS, Lyons KM (2004) Multiple functions of BMPs in chondrogenesis. J Cell Biochem 93(1):93–103

    PubMed  CAS  Google Scholar 

  89. Matsuda N, Lin WL, Kumar NM, Cho MI, Genco RJ (1992) Mitogenic, chemotactic, and synthetic responses of rat periodontal ligament fibroblastic cells to polypeptide growth factors in vitro. J Periodontol 63(6):515–525

    PubMed  CAS  Google Scholar 

  90. Chen FM, Zhao YM, Wu H, Deng ZH, Wang QT, Zhou W, Liu Q, Dong GY, Li K, Wu ZF, Jin Y (2006) Enhancement of periodontal tissue regeneration by locally controlled delivery of insulin-like growth factor-I from dextran-co-gelatin microspheres. J Control Release 114(2):209–222

    PubMed  CAS  Google Scholar 

  91. Kato T, Kawaguchi H, Hanada K, Aoyama I, Hiyama Y, Nakamura T, Kuzutani K, Tamura M, Kurokawa T, Nakamura K (1998) Single local injection of recombinant fibroblast growth factor-2 stimulates healing of segmental bone defects in rabbits. J Orthop Res 16(6):654–659

    PubMed  CAS  Google Scholar 

  92. Grimaud E, Heymann D, Redini F (2002) Recent advances in TGF-beta effects on chondrocyte metabolism. Potential therapeutic roles of TGF-beta in cartilage disorders. Cytokine Growth Factor Rev 13(3):241–257

    PubMed  CAS  Google Scholar 

  93. Sekiya I, Larson BL, Vuoristo JT, Reger RL, Prockop DJ (2005) Comparison of effect of BMP-2, -4, and -6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma. Cell Tissue Res 320(2):269–276

    PubMed  CAS  Google Scholar 

  94. Solchaga LA, Penick K, Porter JD, Goldberg VM, Caplan AI, Welter JF (2005) FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J Cell Physiol 203(2):398–409

    PubMed  CAS  Google Scholar 

  95. Vinatier C, Bouffi C, Merceron C, Gordeladze J, Brondello JM, Jorgensen C, Weiss P, Guicheux J, Noel D (2009) Cartilage tissue engineering: towards a biomaterial-assisted mesenchymal stem cell therapy. Curr Stem Cell Res Ther 4(4):318–329

    PubMed  CAS  Google Scholar 

  96. Bruder SP, Kraus KH, Goldberg VM, Kadiyala S (1998) The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am 80(7):985–996

    PubMed  CAS  Google Scholar 

  97. Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344(5):385–386

    PubMed  CAS  Google Scholar 

  98. Morishita T, Honoki K, Ohgushi H, Kotobuki N, Matsushima A, Takakura Y (2006) Tissue engineering approach to the treatment of bone tumors: three cases of cultured bone grafts derived from patients’ mesenchymal stem cells. Artif Organs 30(2):115–118

    PubMed  Google Scholar 

  99. Gronthos S (2004) Reconstruction of human mandible by tissue engineering. Lancet 364(9436):735–736

    PubMed  Google Scholar 

  100. Paley D, Herzenberg JE, Paremain G, Bhave A (1997) Femoral lengthening over an intramedullary nail. A matched-case comparison with Ilizarov femoral lengthening. J Bone Joint Surg Am 79(10):1464–1480

    PubMed  CAS  Google Scholar 

  101. Kitoh H, Kitakoji T, Tsuchiya H, Mitsuyama H, Nakamura H, Katoh M, Ishiguro N (2004) Transplantation of marrow-derived mesenchymal stem cells and platelet-rich plasma during distraction osteogenesis––a preliminary result of three cases. Bone 35(4):892–898

    PubMed  Google Scholar 

  102. Sia IG, Berbari EF (2006) Infection and musculoskeletal conditions: osteomyelitis. Best Pract Res Clin Rheumatol 20(6):1065–1081

    PubMed  Google Scholar 

  103. Hou T, Xu J, Li Q, Feng J, Zen L (2008) In vitro evaluation of a fibrin gel antibiotic delivery system containing mesenchymal stem cells and vancomycin alginate beads for treating bone infections and facilitating bone formation. Tissue Eng Part A 14(7):1173–1182

    PubMed  CAS  Google Scholar 

  104. Hernigou P, Beaujean F (2002) Treatment of osteonecrosis with autologous bone marrow grafting. Clin Orthop Relat Res 405:14–23

    PubMed  Google Scholar 

  105. Gangji V, Hauzeur JP, Matos C, De Maertelaer V, Toungouz M, Lambermont M (2004) Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. A pilot study. J Bone Joint Surg Am 86-A(6):1153–1160

    Google Scholar 

  106. Wang BL, Sun W, Shi ZC, Zhang NF, Yue DB, Guo WS, Xu SQ, Lou JN, Li ZR (2010) Treatment of nontraumatic osteonecrosis of the femoral head with the implantation of core decompression and concentrated autologous bone marrow containing mononuclear cells. Arch Orthop Trauma Surg 130(7):859–865

    PubMed  Google Scholar 

  107. Ji WF, Ding WH, Ma ZC, Li J, Tong PJ (2008) Three-tunnels core decompression with implantation of bone marrow stromal cells (bMSCs) and decalcified bone matrix (DBM) for the treatment of early femoral head necrosis. Zhongguo Gu Shang 21(10):776–778

    PubMed  Google Scholar 

  108. Marsh D (1998) Concepts of fracture union, delayed union, and nonunion. Clin Orthop Relat Res (355 Suppl):S22–S30

    Google Scholar 

  109. Galois L, Bensoussan D, Diligent J, Pinzano A, Henrionnet C, Choufani E, Stoltz JF, Mainard D (2009) Autologous bone marrow graft and treatment of delayed and non-unions of long bones: technical aspects. Biomed Mater Eng 19(4–5):277–281

    PubMed  Google Scholar 

  110. Siwach RC, Sangwan SS, Singh R, Goel A (2001) Role of percutaneous bone marrow grafting in delayed unions, non-unions and poor regenerates. Indian J Med Sci 55(6):326–336

    PubMed  CAS  Google Scholar 

  111. Hernigou P, Poignard A, Beaujean F, Rouard H (2005) Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 87(7):1430–1437

    PubMed  Google Scholar 

  112. Scaramuzzo L, Raffaelli L, Spinelli MS, Damis G, Maccauro G, Manicone PF (2011) Orthopaedic and dental abnormalities in osteogenesis imperfecta: a review of the literature. J Biol Regul Homeost Agents 25(3):313–321

    PubMed  CAS  Google Scholar 

  113. Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5(3):309–313

    PubMed  CAS  Google Scholar 

  114. Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, Muul L, Hofmann T (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A 99(13):8932–8937

    PubMed  CAS  Google Scholar 

  115. Panaroni C, Gioia R, Lupi A, Besio R, Goldstein SA, Kreider J, Leikin S, Vera JC, Mertz EL, Perilli E, Baruffaldi F, Villa I, Farina A, Casasco M, Cetta G, Rossi A, Frattini A, Marini JC, Vezzoni P, Forlino A (2009) In utero transplantation of adult bone marrow decreases perinatal lethality and rescues the bone phenotype in the knockin murine model for classical, dominant osteogenesis imperfecta. Blood 114(2):459–468

    PubMed  CAS  Google Scholar 

  116. Fraser D (1957) Hypophosphatasia. Am J Med 22(5):730–746

    PubMed  CAS  Google Scholar 

  117. Tadokoro M, Kanai R, Taketani T, Uchio Y, Yamaguchi S, Ohgushi H (2009) New bone formation by allogeneic mesenchymal stem cell transplantation in a patient with perinatal hypophosphatasia. J Pediatr 154(6):924–930

    PubMed  CAS  Google Scholar 

  118. Katsube Y, Kotobuki N, Tadokoro M, Kanai R, Taketani T, Yamaguchi S, Ohgushi H (2010) Restoration of cellular function of mesenchymal stem cells from a hypophosphatasia patient. Gene Ther 17(4):494–502

    PubMed  CAS  Google Scholar 

  119. Kuroda R, Ishida K, Matsumoto T, Akisue T, Fujioka H, Mizuno K, Ohgushi H, Wakitani S, Kurosaka M (2007) Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthr Cartil 15(2):226–231

    PubMed  CAS  Google Scholar 

  120. Wakitani S, Mitsuoka T, Nakamura N, Toritsuka Y, Nakamura Y, Horibe S (2004) Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Cell Transplant 13(5):595–600

    PubMed  Google Scholar 

  121. Wakitani S, Nawata M, Tensho K, Okabe T, Machida H, Ohgushi H (2007) Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. J Tissue Eng Regen Med 1(1):74–79

    PubMed  Google Scholar 

  122. Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47:487–504

    PubMed  CAS  Google Scholar 

  123. Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M (2002) Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthr Cartil 10(3):199–206

    PubMed  CAS  Google Scholar 

  124. Centeno CJ, Busse D, Kisiday J, Keohan C, Freeman M, Karli D (2008) Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician 11(3):343–353

    PubMed  Google Scholar 

  125. Davatchi F, Abdollahi BS, Mohyeddin M, Shahram F, Nikbin B (2011) Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis 14(2):211–215

    Google Scholar 

  126. Taylor PC, Feldmann M (2009) Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. Nat Rev Rheumatol 5(10):578–582

    PubMed  CAS  Google Scholar 

  127. Nishimoto N (2010) Interleukin-6 as a therapeutic target in candidate inflammatory diseases. Clin Pharmacol Ther 87(4):483–487

    PubMed  CAS  Google Scholar 

  128. Ringe J, Sittinger M (2009) Tissue engineering in the rheumatic diseases. Arthritis Res Ther 11(1):211

    PubMed  Google Scholar 

  129. Augello A, Tasso R, Negrini SM, Cancedda R, Pennesi G (2007) Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum 56(4):1175–1186

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamadreza Baghaban Eslaminejad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baghaban Eslaminejad, M., Zomorodian, E., Bagheri, F. (2013). Mesenchymal Stem Cells in Bone and Cartilage Regeneration . In: Baharvand, H., Aghdami, N. (eds) Regenerative Medicine and Cell Therapy. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-098-4_7

Download citation

Publish with us

Policies and ethics